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Abstract In this paper, we investigate how robust and flexible solutions of a number
of stochastic variants of the capacitated vehicle routing problem can be obtained.
To this end, we develop and discuss a method that combines a sampling based
approach to estimate the robustness or flexibility of a solution with a metaheuristic
optimization technique. This combination allows us to solve larger problems with
more complex stochastic structures than traditional methods based on stochastic
programming. It is also more flexible in the sense that adaptation of the approach
to more complex problems can be easily done. We explicitly recognize the fact that
the decision maker’s risk preference should be taken into account when choosing a
robust or flexible solution and show how this can be done using our approach.

Keywords Stochastic vehicle routing · Robustness · Flexibility ·
Monte Carlo sampling · Metaheuristics · Memetic algorithm

1 Robust and Flexible Vehicle Routing

The objective of vehicle routing problems is to determine the order in which to
visit a spatially distributed set of customers using a set of vehicles so that the
total travel cost (distance, time) is minimized. Standard vehicle routing formulations
however, assume that all data concerning customer demand, travel costs, etc. are
known with perfect certainty at design time. For many reasons, e.g. the uncertainty
related to traffic conditions, these assumptions are unwarranted in a large number
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of practical situations. In such cases stochastic vehicle routing formulations are
more appropriate.

For stochastic problems in general, robust or flexible solutions are required.
Consistent with the definitions found in the literature (see e.g., Kouvelis and Yu
[25], Mulvey et al. [29], Roy [34], Vincke [45], Dias and Clímaco [9], Branke
[6]), we call a solution to a stochastic optimization problem robust if it has a
high quality regardless of the actual realization of the stochastic parameters. In
other words, although in almost all cases the risk of a poor realization cannot be
completely excluded, a solution that consistently has a high performance across most
possible outcomes of the stochastic parameters, is called robust. Usually, stochastic
optimization algorithms attempt to find the solution that has either the best expected
quality or the best worst-case quality over all potential outcomes of the stochastic
parameters. Many situations exist in which a solution can be (at least partially)
changed once the actual values of the stochastic parameters become known. In this
case, a solution is preferred that can be successfully adapted to most realizations of
the stochastic parameters, even though it is usually impossible to exclude the risk of a
realization to which the solution cannot be adapted. Such a solution is called flexible.
In other words, a flexible solution is one that has a high quality after adaptation to
the outcomes of the stochastic parameters, whereas a robust solution is one that
has a high quality without adaptation to the stochastic parameters. The procedure
that is used to adapt the solution to the actual values of the stochastic parameters is
called a recourse procedure. An important remark is that the definition of a robust or
flexible solution is highly dependent on the specific situation and the decision maker
involved. It is our firm belief that methods for stochastic optimization should offer
considerable freedom to the decision maker to determine his/her own method of
measuring robustness or flexibility, and to determine the amount of risk he/she is
willing to take.

Several problems arise with traditional stochastic programming methods, that
inhibit their use in real-life vehicle routing applications. First, most methods for
stochastic optimization are unable to solve problems of realistic size. Indeed, as
indicated by Birge [5], the complexity of stochastic programs grows proportionally
to the number of possible realisations of the stochastic parameters, which in turn
grows exponentially with the number of stochastic parameters. As a result, only
very small problems can be solved to “optimality”. A second drawback to traditional
stochastic programming methods is the fact that they make heavy use of the specific
stochastic structure of the problem they consider and are very difficult to adapt
to other problems. As a result, commercial packages for vehicle routing, although
widely used in practice, can usually not accommodate for stochastic parameters.
Third, most algorithms developed for stochastic routing attempt to find the so-
lution with the optimal expected value. Although the average performance of a
solution is certainly an important indication of its robustness, it does not take into
account the risk preference of the decision maker. Some approaches to incorporate
the risk preference in the vehicle routing formulation exist, see e.g. the chance-
constrained stochastic problems discussed in Dror [10], Dror et al. [11]. The value
of correctly addressing uncertainty and risk in operational planning has been deter-
mined by Reimann [33] in the context of a vehicle routing problem with stochastic
demand.
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To partially overcome the curse of dimensionality in stochastic optimization, a
part of the stochastic programming literature has fused on methods that use some
form of Monte Carlo sampling of the stochastic parameters, an idea that can be traced
back to Jagannathan [21]. For stochastic linear programming problems, stochastic
decomposition [17] and importance sampling [20] have been developed. For discrete
stochastic problems, Norkin et al. [30, 31] develop a sampling branch-and-bound.
Whereas these methods use sampling at different steps of the optimization method
to estimate e.g., function values, the sample average approximation method [24]
uses sampling to generate a set of sample scenarios and then attempts to optimize
the corresponding deterministic expected-value problem. This method has been
successfully applied to supply chain design problems [14] and routing problems [44],
among others.

Specifically in vehicle routing, a number of problem formulations designed to find
robust or flexible solutions have been developed. Three types of such formulations,
commonly referred to as stochastic vehicle routing problems can be distinguished:
problems with stochastic travel times (e.g., Lambert et al. [26]), problems with
stochastic demands (e.g., Stewart and Golden [42]), and problems with stochastic
customers, i.e., in which each customer has a certain probability of requiring service
(e.g., Bertsimas [3]). For more details on these different problem formulations, we
refer to Gendreau et al. [13].

The best-studied stochastic vehicle routing problem is the vehicle routing problem
with stochastic demand (VRPSD). The main issue in this problem is that the vehicle
may have to visit the depot at previously unforeseeable moments for restocking.
A question that arises naturally is to which extent re-optimization of the routes
as new information becomes available is beneficial. Haughton [15] and Haughton
and Stenger [16] study different strategies for route modification and estimate
the benefits of using re-optimization. A re-optimization approach is developed by
Secomandi [35–37], who uses various Markov decision process formulations of the
problem, and presents a rollout policy heuristic for two of them. A dynamic re-
optimization approach to solve a stochastic VRP with both stochastic customer
locations and demands can be found in Hvattum et al. [19]. An alternative to re-
optimization is a-priori optimization, in which the recourse action consists of simply
returning to the depot for restocking if demand at a customer cannot be fully
delivered. Gendreau et al. [12] and Laporte et al. [27] describe exact algorithms for
this problem.

Recently, a rather large body of literature has emerged on sampling-based meth-
ods in vehicle routing. Kenyon and Morton [23], for example, develop a branch-and-
cut framework that includes a sampling-based estimation of the objective function
value. Some attention in the literature has been given to determine the sample size
in Monte Carlo sampling. Homem-De-Mello [18] studies variable sampling schemes
for discrete stochastic optimization problems. In these schemes, the sampling size is
adaptively decided at each iteration. In [7], the authors apply such a scheme to the
VRPSD.

In this paper, we adopt a pragmatic approach to stochastic optimization and ap-
proximate the stochastically optimal solution on two levels. First, we use a sampling-
based approach to quickly estimate the robustness of a solution. This allows us to
quickly and simultaneously evaluate both average and worst-case performance of
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a solution, but more complicated measures of robustness can be incorporated. Our
sampling-based approach also allows us to evaluate solutions of problems with many
stochastic parameters. Second, we use a metaheuristic to find the solution with the
best approximate robustness characteristic, which allows us to solve large problems.
Our approach adapts a metaheuristic for a deterministic problem by replacing
its evaluation function by a so-called robustness/flexibility evaluation function. An
application of this method to the capacitated facility location problem can be found in
Sörensen [40]. In Sörensen [39], it was shown how the method can be used to increase
the stability of vehicle routing solutions over time, an important issue in practice but
often overlooked in the literature. For a general survey of the use of metaheuristics in
stochastic optimization, we refer to Bianci et al. [4]. The approach in this paper differs
from approaches generally found in the literature in that it explicitly recognizes
the need for the decision maker to incorporate a measure of risk in the objective
function, and allows to focus on a more complicated—and possibly multi-objective—
measure of robustness than the expected value. Moreover, the flexibility of the
approach also allows us to solve problems with different stochastic structures (e.g.
with or without second-stage decisions) by making minimal changes to the algorithm.
The fact that the MA|PM by design generates diverse solutions helps the algorithm
to track down those solutions that are most robust and/or flexible.

The rest of this paper is organized as follows. In Section 2, we describe the
deterministic capacitated vehicle routing problem (CVRP) and develop a memetic
algorithm with population management to solve it. In Section 3, we show how this
algorithm can be adapted so that it searches for robust and/or flexible solutions.
Rather than focus on a specific stochastic vehicle routing problem, we use this
method in Section 4 to solve a variety of different stochastic variants of the CVRP.
Section 5 discusses the computing times required by our method and the choice of
the number of samples. Finally, some conclusions and pointers for future research
can be found in Section 6.

2 Problem Description and Deterministic Solution Method

2.1 The Capacitated Vehicle Routing Problem

The CVRP is defined on an undirected graph G = (V, E) with a set of nodes
V = {0, 1, . . . , n}. Node 0 corresponds to the depot, where a set of identical vehicles
are located, that all have capacity Q. Each vehicle may execute a route that has
a maximal travel cost of C. Nodes 1 to n represent a set of spatially distributed
customers, the demand of which is given by qi. The travel cost between customer i
and customer j is given by cij, the weight of the edge between node i and node j. The
objective of the deterministic VRP is to find a set of minimum total cost routes that
have the following properties: (1) each route begins and ends at the depot, (2) each
customer is visited exactly once, (3) the capacity and maximal travel cost per route
of the vehicles is not exceeded. For a mathematical formulation of this problem, we
refer to Toth and Vigo [43].
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2.2 A Memetic Algorithm With Population Management for the CVRP

To solve this problem, we have developed a MA|PM, or menetic algorithm with
population management. A MA|PM is a memetic algorithm (a GA hybridised with
local search) that uses distances to measure and control the diversity of a small
population. This allows to maintain diversity in the population while keeping the
size of the population small. For a more elaborate description of MA|PM, we refer
to Sörensen and Sevaux [41].

A memetic algorithm with population management is structured much like a
standard memetic algorithm, but differs in the use of population management. An
outline is given in Algorithm 1.

In Algorithm 1, dP(o) is the distance of solution o to the population P. In
Section 2.2.2, we discuss how this distance can be calculated. � is the so-called
population diversity parameter, i.e. the minimum distance to the population that a
solution should have before it can be considered for insertion into the population.
This parameter can be used to control the diversity level of the population. b is a
solution from the population that is chosen for removal by a selection operator (see
Section 2.2.5).

2.2.1 Solution Representation

In our MA|PM, a solution S is represented as a vector of customers, without trip de-
limiters S = (S1, S2, . . . , Sn) with Si ∈ {1, . . . , n} and Si �= S j if i �= j. When necessary
(e.g., to calculate their objective function value) they are decoded optimally using
the split decoding procedure by Prins [32]. This procedure finds the optimal points
at which to split the solution into tours (i.e. schedule visits to the depot) so that
the resulting decoded solution is feasible and the total travel cost is minimized. It
makes use of an auxiliary directed weighted graph H = (X, F, W). The vertex set X
contains n + 1 nodes (where n is the number of customers served), labelled from 0
(the depot) to n.
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The edge set F is constructed as follows. An edge (i, j) from vertex i to vertex j
(i < j) is added when a trip containing customers Si+1 to S j is feasible, i.e., if

j∑

k=i+1

qSk ≤ Q (1)

and

wij = c0Si+1 +
j−1∑

k=i+1

cSk Sk+1 + cS j0 +
j∑

k=i+1

eSk ≤ C. (2)

The weight wij of the arc (i, j) is equal to the sum of the travel costs covered in
the trip (0, Si+1, Si+2, . . . , S j, 0). The minimum-cost path from vertex 0 to vertex n
in H gives the shortest set of trips corresponding to this encoding. If more than one
min-cost path exists, each of these paths will give a set of trips with equal total length.
Since the graph H contains only positive weights and no circuits, the shortest path
can be efficiently calculated using Bellman’s algorithm [2].

2.2.2 A Distance Measure for CVRP Solutions

A second procedure used heavily by our MA|PM for the CVRP is a distance measure
based on the edit distance. Given three possible edit operations (add character,
remove character and substitute character), the edit distance d(s, t) is defined as the
minimal number of edit operations required to transform a string s into another
string t. The edit distance is heavily studied in the literature. A simple dynamic
programming algorithm [46] calculates this measure in O(l2) where l is the length
of both strings. Other, more efficient algorithms have been developed, but these are
beyond the scope of this paper.

Vehicle routing solutions can be regarded as sets of strings, each string represent-
ing a tour. As tours have no direction, each string may be reversed. The distance
measure for the CVRP developed in Sörensen [38] calculates the minimal number
of edit operations required to transform a VRP solution into another one, keeping
into account that both solutions consist of a set of reversable strings. This is done by
assigning tours from the first solution to the second one so that the total number of
required edit operations is minimized.

Given two solutions s and t having m and n trips respectively, the distance
measure constructs a square matrix M of size max(m, n). Each column and each row
represents a trip of s and t respectively. Empty trips are added to the solution with the
smallest number of trips to give both solutions an equal number of trips. Cell (i, j) of
M contains the minimum of d(si, t j) and d(si, t̃ j), where si is the i-th trip of solution
s and t̃ j is the reversed j-th trip of solution t. A linear assignment problem is then
calculated to find a minimum-cost assignment of trips in solution s to trips in solution
t. The cost of the assignment problem is the distance between the two solutions.

Consider the example in Fig. 1, in which we find the distance between two
solutions to a vehicle routing problem with 10 customers, labeled a to i.
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Fig. 1 Two solutions of a vehicle routing problem (a, b)

The solutions in Figs. 1a and b can be encoded, for example, in the following ways:
A = (0, 2, 3, 1, 4, 10, 0, 6, 5, 8, 7, 9, 0) and B = (0, 8, 5, 6, 0, 7, 0, 9, 10, 4, 3, 1, 2, 0).
Note that the order in which the trips are listed in the encoding, as well
as the direction of the trips in the encoding, may be changed. For example,
(0, 9, 7, 8, 5, 6, 0, 2, 3, 1, 4, 10, 0) is a valid encoding of solution A. Also note that the
solutions do not contain the same amount of trips. The distance measure developed
in this section takes all this into account.

To calculate the distance between solutions A and B, we calculate the distance
between each trip in A and each trip in B, adding empty trips to the solution with
the smallest number of trips so that both solutions have the same amount of trips
(Table 1a, empty trips are indicated by �). We also calculate the distance between
each trip in A and the reverse of each trip in B (Table 1b). The minimum of
corresponding cells in both matrices is shown in matrix M, Table 1c. In all tables,
the depot has been omitted. The solution of the linear assignment problem with M
as cost matrix is indicated in bold. The distance between the two solutions is equal to
the total cost of the assignment, i.e. 6.

In the MA|PM, the distance measure is used for population management in
order to maintain the diversity of a small population of high-quality individuals
and overcome problems of premature convergence. Before a (candidate) solution
is added to the population, the algorithm checks to see whether it satisfies the
population diversity criterion, i.e., whether it is sufficiently different from all other
members of the population. This is done by measuring the so-called distance to the
population, i.e., the minimum distance of the candidate solution o to any solution
already in the population. In symbols, dP(o) = minx∈P d(o, x). The solution cannot
be added until its distance to the population is greater than or equal to the value of
the population diversity parameter �. This value can be used to control the diversity
of the population as an increase of � will tend to increase population diversity, while
a small value will tend to decrease it. Intensification and diversification phases can be
alternated by setting the value of � to appropriate levels [41].
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Table 1 Distances between
trips for calculation of the
distance between the VRP
solutions

(a)
(2, 3, 1, 4, 10) (9, 7, 8, 5, 6) 

(2, 1, 3, 4, 10, 9) 3 6
7 5 1

(6, 5, 8) 5

6
4
4 3

(b)
(10, 4, 1, 3, 2) (6, 5, 8, 7, 9) 

(2, 1, 3, 4, 10, 9) 5 6
7 5 1

(6, 5, 8) 5

6
5
2 3

(c) Matrix M
min (2, 3, 1, 4, 10) (9, 7, 8, 5, 6) 

(10, 4, 1, 3, 2) (6, 5, 8, 7, 9) 
(2, 1, 3, 4, 10, 9) 3 6 6

7 5 4 1
(6, 5, 8) 5 2 3

V

V

V
V

2.2.3 Local Search Optimization

The MA|PM also uses a fast local optimization algorithm, that consists of two
simple tabu search procedures that are used alternatively until neither of them finds
any more improvements. The insert tabu search procedure attempts to locate any
customer at any other potential location in the solution (i.e., any other location in
any other tour) and takes the move that decreases the total cost most (or increases
it least when no improving moves can be found). An insertion of a customer into
another location is only allowed when no constraints are violated by this move and
when the customer does not appear on the tabu list. This insert procedure is repeated
until the best-found solution during this tabu search phase has not been improved for
a fixed number of moves. A fixed-length tabu list is maintained to avoid cycling. The
tabu list contains the customers that were most recently moved. The swap tabu search
procedure attempts to swap every pair of customers and swaps the pair that yields the
largest improvement in objective function value. The swap of a pair of customers is
only allowed when the resulting solution does not violate any constraints and when
the pair of customers does not appear on the tabu list. This procedure is repeated
until a fixed number of non-improving moves. In this case, the tabu list contains
pairs of items that were most recently swapped. Pairs that appear on the tabu list
are excluded from swapping.

2.2.4 Crossover

The crossover operator used in our MA|PM is the linear ordered crossover (LOX).
This operator starts by randomly dividing both parents into three parts. The first
offspring solution is found by copying the middle part from parent one and complet-
ing the solution by circularly scanning parent two, starting from the third part and
wrapping to the first part. The second offspring is formed by reversing the roles of
the parents. An example is shown in Fig. 2. The bold letters in this figure indicate
which customers end up in the first offspring solution. The arrows indicate the order
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Fig. 2 Linear ordered crossover (LOX)

in which the two parents are scanned to produce the first offspring and how this
offspring is built. For the second offspring, the roles of the parents are reversed.

2.2.5 Overview and Adaptive Population Management

To build an initial population, our MA|PM for the CVRP starts by generating a set
of random permutations of all customers. These are then decoded (using the split
procedure) and subjected to local search (alternating the two tabu search operators
until no more improvement is found). The initial population consists of a small
number of solutions, usually 10. At each generation, two solutions are drawn from
the population using a binary tournament selection operator (i.e., we retain the
best of two randomly chosen solutions). These two solutions are subjected to the
LOX operator, to generate two offspring solutions. Both offspring solutions are then
decoded and subjected to the tabu search local searches. When an improved offspring
solution satisfies the diversity criterion, it is added to the population. If not, it is
mutated until it does satisfy the diversity criterion and then added to the population.
The mutation operator randomly swaps two customers and repeats this step until the
resulting solution satisfies the diversity criterion. The resulting solution is then added
to the population, replacing a solution chosen by reverse binary tournament selection
(i.e. the worst of two randomly chosen solutions is removed).

We use an adaptive population management scheme, in which the value of �

is slowly decreased to allow the search to intensify and increased again when the
search appears to be stuck in a local optimum, i.e., no more improving solutions are
found for a fixed number of generations. The increase of � forces the search into yet
unexplored regions of the search space, by increasing the distance between solutions
in the population.

Some experiments show that our MA|PM is competitive with the best-known
approaches in the literature. For detailed results, we refer to Sörensen [38].

3 A Sampling-based Approach for Robust and Flexible Vehicle Routing

In this section, we modify the MA|PM developed in the previous section, so that it
is able to deal with stochastic vehicle routing problems. This is done by replacing the
objective function by a robustness or flexibility evaluation function, that measures the
robustness or flexibility of the solution respectively. A recourse function is used if
the solution can be adapted when the actual values of the stochastic parameters
become known.
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In a nutshell, our approach is the following. We use a metaheuristic, such as our
MA|PM, that generates a set of solutions that are both diverse and have a high qual-
ity. For each solution we encounter, we calculate one or more measures of robustness
or flexibility, referred to as a robustness/flexibility evaluation function value. Finally,
we choose the solution that has the best robustness/flexibility evaluation function
value. When two or more measures of robustness or flexibility are calculated, we
choose the solution that has the best combined value using a multi-objective decision
making process.

A robustness evaluation function value for a given solution is calculated by repeat-
edly applying the solution to a sampling of the stochastic parameters and calculating
the corresponding (deterministic) objective function value. These objective function
values are then combined into one or more measures of robustness. If a recourse
procedure is available, the solution is repaired before it is evaluated, and the resulting
objective function is called a flexibility evaluation function. The recourse procedure
may be exact or heuristic in nature.

A typical robustness evaluation function f ∗ is of the form

f ∗(x) = 1

ne

ne∑

i=1

f (x,Si(π)), (3)

where f is the (deterministic) objective function, π is the set of stochastic parameters,
and S is the sampling function. Si(π) represents the i-th sampling of the stochastic
parameters and f (x,Si(π)) is the objective function value of solution x when applied
to the i-th sampling. ne is the number of deterministic evaluations per robustness
evaluation, i.e., the number of evaluations of the solution on a random sampling
of the stochastic parameters. If the solution can be repaired, the recourse function
R is invoked before evaluation the solution and the flexibility evaluation function
becomes

f ∗(x) = 1

ne

ne∑

i=1

f (R(x,Si(π))). (4)

Other useful robustness/flexibility evaluation functions include the worst-case
performance, given (for a minimization problem) by

f ∗
wc(x) = max

i
f (x,Si(π)), (5)

or the standard deviation

σ ∗(x) =
√√√√ 1

ne − 1

ne∑

i=1

[
f (x;Si(π)) − f ∗(x)

]2
. (6)

These measures explicitly incorporate the risk preference of the decision maker into
the process. E.g. the solution that has the best worst-case performance will generally
be more “conservative” or “risk-averse” than the one that has the best average-case
performance. Although in some specific cases, the worst-case performance may be
easy to determine analytically (such as in the CVRP with stochastic travel cost, in
which the worst-case scenario is when all travel costs are at their maximum value),
the sampling-based approximation may be preferred for a number of reasons. First,
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this approximation may be a more realistic estimate of a performance that may
be found in practice. This is especially true in situations in which the theoretical
worst-case scenario is extremely unlikely to occur. A decision maker that wants a
solution that hedges against the “worst-case scenario” generally means a scenario
that has a greater than infinitesimal probability of occurring. A scenario which
corresponds to the worst of a sample of 100 random scenarios may be closer to what
the decision maker means by “worst-case” than a theoretical worst-case scenario that
has almost zero probability to occur. Second, it is not always easy or even tractable
to analytically determine the worst-case performance of a given solution. In vehicle
routing with stochastic demand, this might be the case when penalties for exceeding
demand in a route may make the solution worse than not having any demand in a
route at all.

Artzner et al. [1] argue that measures of risk should be coherent, and define the
four properties that a coherent risk measure should possess (translation invariance,
subadditivity, positive homogeneity, and monotonicity). Although many arguments
can be given to prefer such risk measures, and although the above mentioned risk
measures are not coherent by this definition, our method does not depend on the
risk measures used and so we prefer to stick to the (simpler and better-known) risk
measures above.

The decision maker may decide to find the solution that minimizes f ∗(x) + λσ ∗(x),
where λ is a parameter expressing the risk-averseness of the decision maker. Al-
ternatively, he/she may choose to generate a set of non-dominated solutions using
two or more measures of robustness with varying degrees of risk averseness and
resort to a multi-criteria decision making method to choose between them. Other,
even more complex measures of robustness may be used, such as the probability that
the quality of the solution falls below a certain threshold. Of course, since they are
obtained using Monte Carlo simulation, the robustness/flexibility evaluation function
values are only estimates of the true robustness measures. However, statistical
theory can be used to estimate the reliability of the estimates. For a sufficiently
large number of evaluations (e.g., ne > 30), the central limit theorem states that
f ∗(x) is approximately normally distributed. From this, it follows that an 100(1 − α)

confidence interval for the real average performance of a solution is given by

f ∗(x) ± z1− α
2

√
(σ ∗(x))2

ne
. (7)

For a more elaborate discussion, we refer to Law and Kelton [28].
One possible extension of our method is the use of penalty functions to penalize

violation of constraints. For some samples of the stochastic parameters, a solution
might become infeasible. A penalty function P may be used to express the severity
of the constraint violations and added to the robustness evaluation function value as
follows:

f ∗(x) = 1

ne

ne∑

i=1

[
f (x;Si(π)) + P(x;Si(π))

]
. (8)

In our method, stochastic information can be expressed both as independent proba-
bility distributions on the parameters of the problem, or as a set of scenarios in which
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each of the parameters has a fixed value. In the latter case, the value of ne is the
number of scenarios, and the sampling function S is used to evaluate the performance
of a solution under the different scenarios.

Determining the number of evaluations to perform at each robustness evaluation
is a decision that needs to be taken with some care, because it has an impact on the
computational effort needed and determines to a large extent the precision of the
robustness evaluation function. In Section 5.2, this issue is discussed in more detail.

We believe that our approach has several advantages over traditional methods
based on stochastic programming. As we will show in the experiments section,
our method is considerably more flexible, considerably easier to implement and
applicable to much larger and much more complex problems. Moreover, it allows
the decision maker to evaluate complex robustness characteristics of a solution,
using any type of stochastic information that is available and incorporating his risk
preference.

4 Experiments

In this section, we perform some experiments on different stochastic versions of the
CVRP. Unless otherwise indicated, our MA|PM uses a population of size 10. The
population diversity parameter � is set to 20 initially and reduced by one unit for
each 3 generations. � is set to its initial level after 60 unproductive generations. Both
the swap tabu search and the move tabu search procedures use a tabu tenure of 30
and repeat until 10 non-improving moves have been observed.

Data sets for the stochastic versions are derived from the Christofides et al. [8]
instances for the deterministic CVRP, available from the OR Library.1 We generally
assume that the distributions of the stochastic parameters are independent and have
their mean equal to the corresponding value in the deterministic data set. Unless
otherwise indicated, the robustness/flexibility evaluation function value is based on
ne = 1000 evaluations.

4.1 Vehicle Routing with Stochastic Demand and Cost

In this set of experiments, customer demand qi is assumed to be uniformly distributed
between 0.75q̄i and 1.25q̄i. Travel cost between customers i and j are uniformly
distributed between 0.8c̄ij and 1.2c̄ij. q̄i and c̄ij are the averages of the demand and
travel cost distributions respectively and equal to the values found in the determin-
istic data set. Note that the deterministic problem is the mean value formulation of
the stochastic problem, i.e., the deterministic problem can be obtained by setting all
stochastic parameters to their expected value.

We assume that the routes have to be determined before the actual values of
customers demand and travel cost are known and cannot be changed afterwards.
We therefore attempt to find robust solutions. For some samples of the stochastic

1http://people.brunel.ac.uk/ mastjjb/jeb/orlib/vrpinfo.html

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/vrpinfo.html
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demand and cost, a solution might violate the maximum travel cost constraints
per route or the capacity constraints of the vehicles. We assume that violation of
the maximum travel cost constraints and the capacity constraints results in (large)
penalty cost due to overtime costs payable to the drivers or loss of goodwill by the
customers whose demand the vehicle is not able to satisfy. We therefore introduce
two penalty functions. Let cijk and qik represent the k-th random numbers taken from
the distributions of cij and qi respectively. The deterministic objective function value
of solution x, evaluated on the k-th sampling of the stochastic parameters can be
calculated as follows.

f (x;Sk(π)) =
∑

l

∑

eij∈El(x)

cijk, (9)

where El(x) represents the set of edges included in the l-th tour of solution x, eij the
edge between customers i and j. If the total cost in a given route is larger than C (the
maximum cost), then a fixed penalty per unit of exceeded cost is added.

Pcost (x;Sk(π)) = α1

∑

l

max

⎛

⎝0,
∑

eij∈El(x)

cijk − C

⎞

⎠ . (10)

Similarly, if the total demand served in a given route exceeds the maximum demand
Q, a fixed penalty cost per unit of exceeded demand is added.

Pcapacity (x;Sk(π)) = α2

∑

l

max

⎛

⎝0,
∑

vi∈Vl(x)

qik − Q

⎞

⎠ , (11)

where Vl(x) represents the set of vertices (customers) in tour l of solution x. α1 is the
penalty cost per unit of exceeded travel cost. α2 is the penalty per unit of exceeded
capacity. We set α1 = 100 and α2 = 500. These penalties are set to relatively high
values to clearly distinguish between solutions that are robust and solutions that
are not.

We look for solutions that have both a good average-case and a good worst-
case performance. To this end, we define two robustness evaluation functions: f ∗(x)

and f ∗
wc. To calculate f ∗ for solution x, we calculate the total travel cost increased

with the values of both penalty functions for ne random samples of the stochastic
parameters and take the average. For f ∗

wc, we take the maximum value. For each
solution encountered, we also measure the standard deviation σ ∗(x) and the value
f (x), the deterministic objective function value.

The MA|PM is applied to the 14 vehicle routing problems. Robustness evaluation
function f ∗ is used in the binary tournament selection procedure to select solutions
from the population for crossover. This guides the search towards more robust
solutions. We stop the MA|PM after 200 generations, yielding 400 solutions. Detailed
results are in Appendix (Table 4). Table 2 is an extract from this table holding the
results of a single experiment.

For each data set, three rows are presented. The first row contains the character-
istics of the solution that minimizes f , i.e., the solution that would be found by our
method in the deterministic case, if we would ignore all stochastic information. Note
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Table 2 Vehicle routing with
stochastic demand and cost,
example result

Data file n Criterion f f ∗ σ ∗ f ∗
wc

vrpnc01 50 f 549.76 3211.60 2891.00 17779.56
f ∗ 604.76 605.01 13.21 876.66
f ∗
wc 629.12 629.28 0.61 661.48

that the solutions found in this way are not up to par with those found by the best-
known methods in the literature. This is not due to a bad performance of our method,
but rather to the fact that the method does not explicitly search for solutions that
have a good deterministic objective function value. Rather, the solutions reported
in this row are the best ones encountered while searching for robust solutions. The
second and third rows contain the characteristics of the solution that minimizes f ∗
and f ∗

wc respectively. It can be seen that the solutions in the second and third rows
score considerably better with respect to all robustness indicators ( f ∗, f ∗

wc and σ ∗).
These two solutions are therefore considerably more robust than the solution in
the first row, proving that there is a strong need to take the stochastic information
into account.

This is further illustrated in Fig. 3, where we plot the values of f versus f ∗ for
all 400 solutions. From this figure, it is clear that all robust solutions (low f ∗) have
a good deterministic objective function value, but that the reverse is not necessarily
true. The decision maker can choose one of the two robust solutions presented in
Table 4 or alternatively one of the other non-dominated solutions (solutions for
which there does not exist a solution which scores better with respect to all robustness
evaluation functions) generated by the MA|PM. These are not shown because of
space restrictions.

Fig. 3 Ordinary evaluation and robustness evaluation for vrpnc01
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4.2 Vehicle Routing with Stochastic Customers and a Recourse Function

In some situations, the vehicle dispatcher does not know in advance which customers
will require service and which will not. A possible strategy is to route all customers
and repair the solution once the list of customers that do require service becomes
known. This situation may occur when customers need to book a service in advance,
but may cancel at short notice. A solution that can be effectively repaired is called
flexible.

In an experiment, each customer has a 50% probability of requiring service.
A 100% service level is required and the company therefore decides to design
conservative solutions that are still feasible if all customers in a route require service.
The recourse procedure used by the company is to remove all customers that do not
require service from a given route. If the customer in i-th position in a given route
is removed, the vehicle travels directly from the customer in position i − 1 to the
customer in position i + 1. Total travel cost is measured after the customers have
been removed from the routes.

The MA|PM is run for 200 generations. To determine the solution that has the
highest flexibility, each of the 400 generated solutions is evaluated 1000 times on a
random list of customers. As in the previous experiment, we record the average f ∗,
the maximum f ∗

wc and the standard deviation σ ∗ over all ne evaluations. Results can
be found in Table 5.

From this table, it is clear that not much profit can be gained by using the robust
optimization approach, as the solution that has the best value of f has approximately
the same flexibility characteristics as the solution that optimizes one of the flexibility
evaluation function values. The main reason for this is the requirement that the
solution should be feasible even when all customers are present. This results in very
conservative solutions that—when the actual customers to serve are observed—use
only a fraction of the available resources (capacity and maximum cost). The best
solution of the deterministic problem, utilising as much of these resources as possible,
is therefore likely to be a better solution for the reduced set of customers, than other
solutions that do not use the resources as fully. As a result, this solution is very likely
to be flexible.

5 Use of the Robustness/Flexibility Evaluation Function and Computation Times

5.1 Guiding the Search

The use of our approach for robust and flexible vehicle routing requires some design
issues to be tackled. Especially the question when to use the robustness/flexibility
evaluation function (from now on referred to as robustness evaluation function),
should be taken with some care. Obviously, the robustness evaluation function is
used to evaluate the robustness/flexibility properties of a solution. However, it can
also be used to guide the search towards more robust solutions. In our MA|PM, the
robustness evaluation function is used to guide the search in the binary tournament
selection process. However, it is not used for the move selection of the tabu search
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local optimization procedures. In both tabu search procedures, the (deterministic)
objective function value is used to select the next move. The reason for this is
that the use of the robustness evaluation function for move selection in the tabu
search procedures would have resulted in prohibitive computing time increases.
The bulk of computing time is spent on improving solutions using the tabu search
procedures. While this is necessary to obtain high quality solutions, the tabu search
procedures require a large number of evaluations. Moreover, the calculation of the
cost of a move can easily be short-circuited when a deterministic objective function
is used, but this no longer holds when a robustness evaluation function is used.
Indeed, it can be easily seen that when a customer k is inserted between customers
i and j, the total cost of this route changes by cik + ckj − cij (provided that the
route remains feasible). Similar reasoning applies for removing a customer from a
route or swapping two customers. These shortcut calculations allow a move to be
evaluated without re-computing the entire solution, but they are no longer valid for
a robustness evaluation function.

By using the robustness evaluation function for selection of solutions from the
population, it only has to be calculated twice for each generation (when both
solutions are added to the population). This results in relatively small computing time
increases as can be seen in Table 3. This table compares the computing times for 200
generations for the MA|PM in the deterministic and the stochastic case (experiment
with stochastic demand and cost). Computation time never increases by more than a
factor of 3.08 (Computational time for each instance can be found in Tables 4 and 5).

Although the problems mentioned in this paper could be adequately solved by
using the ordinary evaluation function to guide the search, situations are imaginable
in which this is not the case. In such cases, the decision maker will be forced to
use the robustness evaluation function to guide the search, incurring a much higher
computational cost. In the experiments described here, the number of evaluations ne

could be relatively arbitrarily set to a very high level. In cases where the robustness
evaluation should be used to guide the search, a much more careful decision is
warranted. This is discussed in the next section.

Table 3 Computing times
(200 generations) Data file n avg. determ. (s) avg. stoch. (s) avg.stoch.

avg.determ.

vrpnc01 50 68.84 99.30 1.44
vrpnc02 75 205.59 408.59 1.99
vrpnc03 100 363.23 573.17 1.58
vrpnc04 150 932.70 1856.12 1.99
vrpnc05 199 1969.29 4266.21 2.17
vrpnc06 50 92.57 97.52 1.05
vrpnc07 75 205.43 423.80 2.06
vrpnc08 100 369.90 655.88 1.77
vrpnc09 150 967.54 2329.98 2.41
vrpnc10 199 1657.46 5102.75 3.08
vrpnc11 120 667.53 1215.21 1.82
vrpnc12 100 292.09 698.23 2.39
vrpnc13 120 772.81 1008.80 1.31
vrpnc14 100 526.89 722.35 1.37
All N/A 649.42 1389.85 2.14
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5.2 Determining the Number of Evaluations

One of the design choices that influence the computation time when using our
robust optimization approach is the value of ne, the number of objective function
evaluations to perform to calculate the value of the robustness evaluation function.
In the experiments performed in this paper, we put the value of ne at 1000 and
still obtained relatively small computing time increases, but this may not always be
the case. Especially in situations where the objective function is time-intensive to
calculate, the value of ne must be carefully chosen.

As mentioned before, a confidence interval can be calculated around the value of
f ∗ (see Eq. 7). The value of ne should be chosen in such a way that the confidence
interval is small enough. How small exactly the confidence interval should be,
depends on the specific application, the level of confidence that is required by the
decision maker and the computing time available. Determining the value of ne can
either be done off-line, i.e. before the optimization process starts or on-line, i.e.
during the optimization phase. In the off-line case, ne is fixed to a certain value, and
the same value is used throughout the optimization run. We used this technique in
the examples in Section 4. In the on-line case, the value of ne is determined every
time a solution is evaluated with a robustness evaluation function. In both cases,
an initial number of evaluations n0 needs to be made, after which evaluations are
added until the desired precision is reached. A quick way to estimate the number of
evaluations required is given by Kelton et al. [22], who propose to use the following
rule of thumb:

ne = n0

√
σ0

σe
, (12)

where σ0 is the standard deviation of the initial replications and σe is the desired
standard deviation.

6 Conclusions

In this paper, we have developed an approach to find robust and flexible solutions of
several stochastic versions of the capacitated vehicle routing problem. Our approach
combines the optimization power of metaheuristics with Monte Carlo simulation
based estimation of the robustness or flexibility of a solution. A recourse procedure
is introduced when flexible solutions are needed and penalty functions may be
introduced to penalize violation of constraints. Our approach recognizes the need
for more complex expressions of robustness or flexibility than the often-used average
performance to be entered into the decision-making process.

We have tested our approach on vehicle routing problems with stochastic demand
and cost and with stochastic customers. We have also discussed some design issues,
specifically how the search can be guided towards robust or flexible solutions and
how the computing time increase can be kept within limits.

We believe that our approach offers considerable advantages over more tradi-
tional methods based on stochastic programming, especially when applied to large-
scale, real-life stochastic vehicle routing applications. Further research will therefore
focus on applying our method in real-life applications.
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Appendix

Table 4 Vehicle routing with stochastic demand and costs

Data file n Criterion f f ∗ σ ∗ f ∗
wc CPU (s)

vrpnc01 50 f 549.76 3211.60 2891.00 17779.56 101
f ∗ 604.76 605.01 13.21 876.66
f ∗
wc 629.12 629.28 10.61 661.48

vrpnc02 75 f 891.86 8335.36 4986.75 30836.52 349
f ∗ 956.57 1134.44 617.56 6509.91
f ∗
wc 956.57 1134.44 617.56 6509.91

vrpnc03 100 f 887.97 2904.39 2753.68 16150.60 541
f ∗ 971.38 977.51 72.99 2236.30
f ∗
wc 971.38 977.51 72.99 2236.30

vrpnc04 150 f 1149.53 5313.22 3869.58 23450.44 1893
f ∗ 1208.36 1596.03 1063.23 9598.45
f ∗
wc 1208.36 1596.03 1063.23 9598.45

vrpnc05 199 f 1512.77 10112.13 5737.19 33182.36 4153
f ∗ 1687.18 3040.09 2118.64 15630.12
f ∗
wc 1687.18 3040.09 2118.64 15630.12

vrpnc06 50 f 559.87 567.68 122.64 3350.03 98
f ∗ 559.87 567.68 122.64 3350.03
f ∗
wc 579.51 579.42 9.58 605.79

vrpnc07 75 f 995.55 2583.40 2285.52 11686.45 415
f ∗ 1070.72 1077.22 79.39 2512.38
f ∗
wc 1070.72 1077.22 79.39 2512.38

vrpnc08 100 f 945.33 946.03 38.49 2106.94 648
f ∗ 945.33 946.03 38.49 2106.94
f ∗
wc 965.35 965.21 11.81 999.43

vrpnc09 150 f 1352.35 1506.98 659.95 6979.06 2265
f ∗ 1404.10 1404.68 16.24 1460.92
f ∗
wc 1404.10 1404.68 16.24 1460.92

vrpnc10 199 f 1597.51 3683.01 2822.85 18401.49 5117
f ∗ 1697.23 1698.18 31.61 2415.77
f ∗
wc 1784.14 1783.08 18.10 1837.73

vrpnc11 120 f 1260.55 4775.36 3331.22 21620.35 1229
f ∗ 1492.17 1504.12 212.15 6115.15
f ∗
wc 1507.27 1507.52 26.71 1601.84

vrpnc12 100 f 883.55 8004.79 5372.87 30825.31 698
f ∗ 1138.66 1638.14 1359.21 9534.97
f ∗
wc 1138.66 1638.14 1359.21 9534.97

vrpnc13 120 f 1368.33 4629.15 3227.07 18598.48 1079
f ∗ 1565.28 1611.20 315.01 6819.88
f ∗
wc 1727.20 1734.02 73.03 3117.71

vrpnc14 100 f 952.46 7706.49 5126.85 29321.32 719
f ∗ 1033.58 1775.53 1707.77 13073.67
f ∗
wc 1125.71 2192.62 1891.78 12757.21
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Table 5 Vehicle routing with stochastic customers and recourse procedure

Data file n Criterion f f ∗ σ ∗ f ∗
wc CPU (s)

vrpnc01 50 f 527.46 424.39 28.30 494.89 99.30
f ∗ 528.22 423.92 28.85 488.88
f ∗
wc 528.22 423.92 28.85 488.88

vrpnc02 75 f 905.22 736.65 45.95 854.83 408.59
f ∗ 942.20 721.21 43.89 846.89
f ∗
wc 927.41 728.53 47.00 836.21

vrpnc03 100 f 852.05 703.72 34.09 788.00 573.17
f ∗ 852.14 696.88 32.00 776.41
f ∗
wc 852.14 696.88 32.00 776.41

vrpnc04 150 f 1130.42 977.25 32.34 1067.67 1856.12
f ∗ 1130.42 977.25 32.34 1067.67
f ∗
wc 1134.48 979.88 33.22 1065.78

vrpnc05 199 f 1466.17 1286.28 32.03 1366.59 4266.21
f ∗ 1483.99 1282.70 39.68 1384.81
f ∗
wc 1466.17 1286.28 32.03 1366.59

vrpnc06 50 f 567.92 457.43 32.55 533.51 97.52
f ∗ 577.01 456.09 34.14 553.61
f ∗
wc 569.51 459.30 32.16 528.00

vrpnc07 75 f 990.71 809.90 51.78 919.41 423.80
f ∗ 1000.02 806.21 56.00 945.15
f ∗
wc 990.71 809.90 51.78 919.41

vrpnc08 100 f 933.72 786.23 36.69 872.24 655.88
f ∗ 942.00 779.18 40.24 890.61
f ∗
wc 933.72 786.23 36.69 872.24

vrpnc09 150 f 1351.54 1152.77 40.75 1257.38 2329.98
f ∗ 1351.54 1152.77 40.75 1257.38
f ∗
wc 1351.54 1152.77 40.75 1257.38

vrpnc10 199 f 1574.00 1379.91 41.69 1497.29 5102.75
f ∗ 1577.60 1377.88 42.73 1483.68
f ∗
wc 1577.60 1377.88 42.73 1483.68

vrpnc11 120 f 1122.20 1019.96 21.55 1083.10 1215.21
f ∗ 1123.32 1019.26 22.61 1081.70
f ∗
wc 1125.26 1020.72 21.19 1074.73

vrpnc12 100 f 861.27 774.77 24.27 839.91 698.23
f ∗ 862.98 771.46 24.77 820.59
f ∗
wc 862.98 771.46 24.77 820.59

vrpnc13 120 f 1239.06 1121.11 22.49 1177.47 1008.80
f ∗ 1250.98 1117.50 23.57 1177.95
f ∗
wc 1239.06 1121.11 22.49 1177.47

vrpnc14 100 f 878.46 768.03 23.92 833.47 722.35
f ∗ 878.46 768.03 23.92 833.47
f ∗
wc 878.46 768.03 23.92 833.47
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