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Abstract We focus on the D-optimal design of screening
experiments involving main-effects regression models, espe-
cially with large numbers of factors and observations. We
propose a new selection strategy for the coordinate-exchange
algorithm based on an orthogonality measure of the design.
Computational experiments show that this strategy finds bet-
ter designs within an execution time that is 30% shorter than
other strategies. We also provide strong evidence that the
use of the prediction variance as a selection strategy does
not provide any added value in comparison to simpler selec-
tion strategies. Additionally, we propose a new iterated local
search algorithm for the construction of D-optimal experi-
mental designs. This new algorithm outperforms the original
coordinate-exchange algorithm.

Keywords Optimal design of experiments · D-optimality
criterion · Coordinate-exchange algorithm · Metaheuristic ·
Iterated local search

1 Introduction

One of the most important steps during the design phase of
any product or process is the experimental study carried out
to determine the impact of a set of potentially influential fac-
tors on a specific quality measure. The main objective of that
study is to determine the relationship between a response
variable and the settings of several factors or experimental
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variables that are assumed to affect it. Using (linear) regres-
sion techniques, it is possible to build a predictive model
and identify the settings of the factors that produce the best
value of the response variable. In order to design an exper-
iment, it is necessary to fix the number of observations or
experimental runs and the settings of the factors to be used
at each observation. This should be done with the objective
of maximizing the information produced by the experiment,
in such a way that the regression model can be estimated
as precisely as possible. There are several well-known stan-
dard experimental designs in the literature that achieve this
goal. However, they cannot always be applied to the com-
plex scenarios found in industry. The most common prob-
lems are the following: (I) the set of experimental variables
includes both qualitative and quantitative variables, (II) there
are special resource restrictions and the number of observa-
tions suggested by the standard designs cannot be afforded,
(III) some factors are subject to one or more specific con-
straints, or (IV) a nonstandard regression model is required.
Instead of forcing the experimenter to adapt the experiment in
order to fit the available designs, the optimal design of exper-
iments approach attempts to find the best possible design for
each particular scenario. To accomplish this goal, it is neces-
sary to solve a complex optimization problem the difficulty
of which increases exponentially with the number of factors
and observations (Welch 1982).

Several algorithms have been proposed for this problem
in the past four decades. Most of these have the limitation
of using candidate-set based procedures which drastically
reduce the explored solution space and cannot be used for
large experiments (Atkinson et al. 2007). In recent years, the
advances in control and embedded systems have increased
the capability of industries to carry out experiments with
larger numbers of factors and observations. In the chemi-
cal and pharmaceutical industry, it is now common to find
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advanced control systems that automatically adjust the con-
figuration of the production process. Therefore, it is possible
to program more complex experiments at an affordable cost.
For example, screening experiments used in combinatorial
chemistry for the discovery of new composite materials can
include dozens of factors, each of which with multiple lev-
els (Cawse 2003). This necessitates new algorithms that can
generate optimal designs for larger scale experiments.

The use of exact algorithms has been the traditional
approach to solve combinatorial optimization problems.
These algorithms perform a systematic search of the solu-
tion space and guarantee to find the best possible solution.
The main limitation of these algorithms is the fact that their
execution time increases at an exponential rate, which means
that they cannot solve large instances. More recently, heuris-
tic algorithms have been shown to overcome this problem.
Instead of performing an exhaustive search, these algorithms
explore promising parts of the solution space by using a
more “intelligent” search strategy. While the obtained solu-
tions cannot be proven to be optimal, heuristic algorithms are
generally able to find very good solutions in an acceptable
computing time for instances that are intractable for exact
algorithms. Most of the state-of-the-art heuristics to solve
combinatorial optimization problems belong to the group
of metaheuristics. A metaheuristic is a high-level problem-
independent algorithmic framework that provides a set of
guidelines or strategies to develop heuristic optimization
algorithms (Sörensen and Glover 2013). Several metaheuris-
tics are available in the literature. The family of local search
algorithms explore adjacent portions of the solution space in
order to find better solutions; simulated annealing and tabu
search are the most important members of this family. Other
metaheuristics enhance the performance of local search algo-
rithms by applying different mechanisms to diversify the
exploration process; for instance, iterated local search and
the greedy randomized adaptive search procedure orGRASP.
Other metaheuristics are inspired by natural processes that
are not directly related to the field of optimization. Genetic
algorithms, for example, are based onDarwin’s natural selec-
tion theory of evolution, whereas ant colony optimization
algorithms are based on the behavior of ants during the trans-
portation of food to their colonies. For a more detailed expla-
nation and classification of metaheuristics, see Michalewicz
and Fogel (2004); Talbi (2009).

Within the field of optimal experimental designs, the
coordinate-exchange algorithm (CEA) proposed by Meyer
and Nachtsheim (1995) is viewed as the first algorithm that
employed a different approach than the traditional point-
exchange algorithms to overcome their limitations. Since the
CEA does not use a set of candidate points, the portion of
the solution space that is explored is not restricted. Never-
theless, the main limitation of the CEA is its tendency to get
trapped in locally optimal designs, especially when dealing

with experiments with large numbers of factors and obser-
vations. A strategy that is commonly used to overcome this
issue is to execute the algorithmseveral times, each time start-
ing from a different initial design (Jones 2008). Even though
this restart strategy increases the probability of finding the
global optimum design, it is not effective for the design of
large-scale experiments.

In this paper, we introduce a new strategy for the CEA to
select the coordinates to be exchanged. The objective is to
start the exploration of the design matrix in an area where
an exchange is likely to produce an improvement, and con-
sequently, avoid unnecessary explorations of unpromising
areas.Weperforma thorough comparisonof several selection
strategies in order to find which one produces the best algo-
rithm performance. Additionally, we also propose an iterated
local search (ILS) metaheuristic for the construction of opti-
mal designs. This algorithm has been shown to better avoid
locally optimal solutions than the restart strategy (Lourenco
et al. 2003). Instead of restarting the search process from
scratch every time a locally optimal solution is found, the
ILS algorithm applies a perturbation operator to the solution
in order to better explore the surrounding solution space. We
carried out several computational experiments in order to
tune the parameters of our ILS algorithm and compare its
performance to algorithms that are available in the literature
and in commercial software packages.

This paper is organized as follows. We describe the opti-
mal experimental design problem and its mathematical for-
mulation in Sect. 2. We provide a brief review of the exist-
ing algorithms for the construction of optimal experimental
designs in Sect. 3. This review involves a new classification
based on the structural characteristics of the algorithms. We
discuss the original selection strategy of the CEA in Sect. 4,
where we also propose a new strategy based on an orthogo-
nality measure of the design and compare it to other selection
strategies. We propose a new ILS algorithm for the genera-
tion of optimal designs of experiments in Sect. 5. In Sect. 6,
we show the results of a statistical analysis that was per-
formed to tune the parameters of the ILS. We compare the
performance of the ILS and the CEA found in a statistical
software package in Sect. 7.We present our final conclusions
in Sect. 8.

2 Problem description and mathematical formulation

Let v be the number of factors and n the number of obser-
vations in the experiment. Consider the main-effects lin-
ear regression model given by the expression yi = β0 +
∑v

j=1 β j xi j + εi , where yi is the value of the response vari-
able at the i-th observation, β0 is the intercept of the regres-
sion model, β j is the unknown regression parameter of the
j-th factor, xi j is the setting of the j-th experimental factor
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used in the i-th run, and εi is a random error term added to
themodel to capture the randomvariation each observation is
subject to. The collection of settings of the factors at the i-th
experimental run is denoted by the column vector xi , and is
referred to as the design point or treatment corresponding to
the i-th observation. The model can be expressed in matrix
notation as Y = Xβ +ε, where Y is the n×1 column vector
of responses, X is the design matrix composed of n rows
and (v + 1) columns and β is the (v + 1) × 1 column vec-
tor that contains the unknown regression parameters. Each
row of the design matrix is formed by the model expansion
f ′(xi ) = (1, xi1, xi2, . . . , xiv) in order to include the inter-
cept of the regression model. The error terms are assumed
to be independent and identically distributed random vari-
ables with mean zero and, with no loss of generality, vari-
ance σ 2 = 1. The ordinary least squares (OLS) estimator
for the unknown model parameters is β̂ = (X ′X)−1X ′Y
(Atkinson et al. 2007). The variance–covariance matrix can
be expressed as var(β̂) = (X ′X)−1, where X ′X is the
(v + 1) × (v + 1) symmetric information matrix, which can
be computed as

∑n
i=1 f (xi ) f ′(xi ).

The problem of constructing optimal designs consists of
selectingn design points (or rows f ′(xi )) in order to optimize
a function of the information matrix; the criterion used to
evaluate the designs defines the objective function to bemax-
imized or minimized. The D-optimality criterion is the most
commonly used objective function in practice; it minimizes
the generalized variance of the parameter estimators. This is
accomplished by minimizing the determinant of the estima-
tor’s variance–covariance matrix or, equivalently, maximiz-
ing the determinant |X ′X| of the information matrix. Since
the determinant value exponentially grows with the numbers
of factors and observations, we maximize the D-efficiency
De = 100 × |X ′X|1/(v+1)/n of the design, which is a more
convenient metric that ranges from 0 to 100%. The use of
the D-efficiency as a quality measure has an important draw-
back. Due to the fact that it is a scaled value (with respect
to the numbers of factors and observations), its effectiveness
to show a variation of a design’s quality decreases with the
size of the experiment. Even for completely random designs,
the D-efficiency tends to be larger for experiments with large
numbers of factors and observations. As a result, it is hard
to obtain noticeable increases in the D-efficiency for large-
scale experiments. This phenomenon can be observed in the
computational experiments shown in Sect. 4.1.

In this paper,we focus on screening experiments involving
main-effects linear regression models. This kind of experi-
ments is widely used in industry, especially during the first
stages of process analysis and the design phase of a new
product (Montgomery and Jennings 2006). The main idea
of screening is to carry out one relatively simple experiment
with many factors in order to determine those that affect
the response variable most. Once the influential factors have

been isolated, a more complex experiment can be carried
out in order to investigate these factors in more depth. For
this reason, screening experiments usually consider main-
effects regression models that only include first-order terms.
Additionally, theoretical results show that optimal designs for
screening experiments with quantitative factors only involve
the extreme two levels of each factor (Mitchell 1974). In
this sense, considering only two levels per factor (typically
coded as−1 and+1) suffices to find an optimal design. Two-
level full factorial, fractional factorial and Plackett and Bur-
man (1946) designs are recommended in classical textbooks
for this type of experiments (Atkinson et al. 2007; Mont-
gomery 2008;Wu andHamada 2000). However, as explained
in Sect. 1, these designs are often infeasible in practice due to
complications that arise in real-life experimentation. A more
practical approach to design experiments, in the form of flex-
ible design construction algorithms, is therefore needed.

3 Existing design construction algorithms

Existing algorithms for the generation of optimal experimen-
tal designs can be studied from the perspective of heuristic
optimization. The algorithms aim to find a solution to the
problem (the design of the experiment) that maximizes the
objective function (the D-optimality criterion). More gener-
ally, they belong to the family of metaheuristics called local
search algorithms. The algorithms in this family generate
an initial solution (or take a solution as an input parameter)
and iteratively explore neighboring solutions in the solution
space, i.e. solutions that differ only slightly from the current
solution, in order to find solutions with a better quality. The
scheme applied in each iteration is the following: generate
a neighborhood set of solutions by applying a local search
operator to the current solution, move to one of the neighbor-
ing solutions according to a selection strategy and continue
the exploration. The algorithms stop when a locally optimal
solution is found or when a termination condition is satisfied.

The algorithms for the optimal design of experiments can
be categorized according to two criteria. The first and major
one is related to the granularity of the data structure the
algorithm works with. The most traditional algorithms use
entire points of the design as the units to be modified in
order to generate the neighborhood set. These algorithms are
known as point-based algorithms. A more recent approach
uses a lower-level unit and modifies individual coordinates
of the design points instead. These algorithms are known as
coordinate-based algorithms. The second classification cri-
terion is related to the strategy the algorithm uses to select the
next neighboring solution to explore. Most of the algorithms
use an intuitive approach: they iteratively select a neighbor
that improves the value of the objective function; this strategy
is known as hill climbing. Other algorithms use more com-
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plex strategies in order to avoid getting stuck in a locally opti-
mal solution. Simulated annealing (Kirkpatrick et al. 1983),
for example, allows random transitions to worse neighbor-
ing solutions with a probability that is progressively reduced.
Tabu search (Glover 1986), on the other hand, accepts non-
improving moves when a locally optimal solution has been
reached, but it prevents the return to previously visited solu-
tions by using a memory structure.

3.1 Point-based algorithms

The point-based approach is the dominant one in the opti-
mal design of experiments literature. A large number of
algorithms in this category apply a hill climbing selection
strategy; the most important ones are Fedorov’s algorithm
(Fedorov 1972), the modified Fedorov algorithm (Cook and
Nachtsheim 1980), the K-exchange algorithm (Johnson and
Nachtsheim 1983) and the KL-exchange algorithm (Atkin-
son and Donev 1989). These algorithms share an important
feature, namely the use of a set (or pool) of candidate design
points. This set remains fixed during the execution of the
algorithms and is used to generate the neighborhood set in
each iteration. Consequently, the portion of the design space
that is explored is limited by the size of the set and the ele-
ments it contains. This issue becomes more important when
the numbers of factors and observations increase, and the
construction of a candidate set might be even intractable.
Additionally, the algorithms also share the same neighbor-
hood structure. In each iteration, they generate the neighbor-
hood set with solutions resulting from an exchange of one
point in the design matrix for one point in the candidate set.
Due to this characteristic, these algorithms are called point-
exchange algorithms.

There are two key aspects that differentiate the algorithms:
the size of the neighborhood set and the strategy to select the
improved neighboring solution to continue the exploration.
Fedorov’s algorithm uses the neighborhood set obtained con-
sidering all possible point exchanges, and then selects the
solutionwithin that set that has the highest value of the objec-
tive function. This strategy is known as best-improvement.
The modified Fedorov algorithm operates in a similar fash-
ion, but it attempts to reduce the execution time by making
all beneficial exchanges as soon as they are discovered. If a
neighboring solution with a better objective function value
is found during the generation of the neighborhood set, the
algorithm immediately moves to that better solution. This
strategy is known as first-improvement. The KL-exchange
algorithm attempts to reduce the execution time by limiting
the size of the neighborhood set. This algorithm only consid-
ers for exchange the K points of the design with the lowest
prediction variance and the L points of the candidate set with
the highest prediction variance. For a more detailed review
of the previous algorithms, see Nguyen and Miller (1992).

Other point-based algorithms are adaptations of meta-
heuristics that use more complex selection strategies.
The algorithms proposed by Haines (1987), Meyer and
Nachtsheim (1988), and Lejeune (2003) are implementations
of simulated annealing. The DETMAX algorithm proposed
byMitchell (1974)was one of the first algorithms to include a
primitive notion of a memory structure, well before the tabu
search was introduced in the literature by Glover (1986).
Only many years later, Sung Jung and Jin Yum (1996) pro-
posed a point-based algorithm for optimal design of experi-
ments that follows Glover’s tabu search principles.

3.2 Coordinate-based algorithms

The coordinate-based approach emerged with the CEA pro-
posed by Meyer and Nachtsheim (1995). This algorithm
employs the exchange of individual elements of the design
matrix as the operation to generate the neighborhood set of
solutions.A step-by-step illustration of theCEAcan be found
in Goos and Jones (2011). The columnwise-pairwise algo-
rithm proposed by Li and Wu (1997) for the construction
of supersaturated designs extended this idea by exchanging
pairs of coordinates corresponding to the same factor. The
objective of this extension is to maintain the balance prop-
erty of the design during the search process. This means that
each level of any given factor is used an equal number of
times. The coordinate-based algorithms overcome the limi-
tations of point-exchange algorithms regarding the use of a
pool of candidate design points. Since these algorithms do
not use candidate sets for the generation of the neighborhood
set, the portion of the solution they explore is not restricted
in advance and they are a viable option to design large-scale
experiments. Every coordinate-based algorithm in the liter-
ature applies a hill climbing selection strategy. The imple-
mentation of more complex local search metaheuristics that
use the coordinate-based approach remains unexplored. One
of the main goals of this paper is to set the first steps in that
direction.

3.3 Genetic algorithms

In recent years, there have been several attempts to develop
genetic algorithms for the construction of experimental
designs. A genetic algorithm is a population-based meta-
heuristic that mimics the process of natural evolution. Since
genetic algorithms do not belong to the group of local search
metaheuristics, we did not discuss them in the previous sec-
tions. One of the first genetic algorithms, introduced byMon-
tepiedra et al. (1998), proposes a binary string for the encod-
ing of the solutions. In contrast, the algorithms proposed by
Borkowski (2003) and Heredia-Langner et al. (2003) use a
decimal representation. Although these algorithms have been
able tofinddesigns comparable to theones obtainedbyclassi-
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cal algorithms, their execution times are considerably longer.
Therefore, they are not a viable alternative for the design of
large-scale experiments. For more information about genetic
algorithms and their application to other optimization prob-
lems, see Davis (1991).

4 Selection strategy of the coordinate-exchange
algorithm

The selection strategy is one of the most important aspects
in the structure of the CEA. It defines the order in which the
coordinates of the design points are considered for exchange,
or from a heuristic point of view, the order inwhich the neigh-
boring solutions are calculated andvisited. It has an important
impact both on the execution time and the solution quality.
The best-improvement strategy is to non-experts intuitively
more appealing than any other strategy. One would expect
to find a better locally optimal solution if the neighboring
solution selected in each iteration is the one with the best
objective function value. However, this is the most time con-
suming strategy and the first-improvement strategy appears
to be a good trade-off between solution quality and execution
time. In order to identify which is the best selection strategy
for the CEA, it is necessary to carry out a deeper analy-
sis of the performance of the algorithm. In this section, we
first analyze the original selection strategy used by Meyer
and Nachtsheim (1995). We also propose a new selection
strategy based on an orthogonality measure of the design.
Finally, we perform a thorough comparison of several selec-
tion strategies to identify the one that yields the best algorithm
performance.

4.1 Original selection strategy

The selection strategy originally proposed for the CEA is
derived from the point selection strategy of the K-exchange
algorithm. This strategy takes into account the prediction
variance at the design points to determine the subset of
points considered for exchange. The prediction variance at a
design point is defined as var(xi ) = f ′(xi )(X ′X)−1 f (xi ).
The use of this value to guide the execution of the algo-
rithm is motivated by the update formulas commonly used in
point-based algorithms (Atkinson et al. 2007). These for-
mulas allow a fast calculation of the determinant of the
information matrix when a point is added to or deleted
from the design. When a point xa is added, the new value
of the determinant can be calculated using the expression
|X ′X|n+1 = |X ′X|n(1 + var(xa)). Similarly, when a point
xd is deleted, the determinant value can be calculated using
the expression |X ′X|n−1 = |X ′X|n(1− var(xd)). The point
selection strategy of theK-exchange algorithm focuses on the
K least critical points in the design, i.e. the points the deletion

of which produces the smallest decrease in the determinant
value. Therefore, the K-exchange algorithm only considers
the K design points with the smallest prediction variance.
The original CEA uses the same guideline in order to select
the subset of design points to be modified in each iteration.
The size of this subset is equal to K = n/4, which is sug-
gested to be sufficient in order to obtain designs comparable
to those produced by themodified Fedorov algorithm (Meyer
and Nachtsheim 1995).

The original computational experiments carried out to
measure the performance of the CEA do not include a formal
study regarding the effects of the variation of the K value.
Additionally, only main-effects models with up to 11 factors
were considered. It is important to determine the appropri-
ateness of the value K = n/4, especially for the design of
large-scale experiments. For this reason, we carried out addi-
tional computational experiments. For this study and the oth-
ers presented in this paper, the benchmark set is composed
of 28 instances with the number of factors ranging from 3 to
30. For practical purposes, we divide the benchmark set into
small experiments (with less than 11 factors), medium-sized
experiments (from 11 to 20 factors) and large experiments
(from 21 to 30 factors). The entire set of benchmark instances
is detailed in Table 1. Every experiment considered in this set
has a number of observations that is amultiple of four.When-
ever n is a multiple of four, there exist orthogonal designs
for which |X ′X| = nv+1. Therefore, the D-efficiency of the
optimal designs is known to be 100% for all the experiments
in the benchmark set. This explains why we chose exper-
iments with these characteristics: in order to have certain
information about the D-efficiency of their optimal designs.
However, the algorithms analysed and proposed in this paper
are meant to generate designs for experiments with any num-
bers of factors and observations, possibly with constraints on
the factor levels. In order to explore a variety of experimen-
tal scenarios, the numbers of observations were calculated
by considering four different values for the ratio n/v. There
are seven experiments in the benchmark set for each ratio
in the set {1, 1.5, 2, 3}. Whenever needed, the actual num-
bers of observations were calculated by rounding up to the
next higher multiple of four. The metric used to measure the
computational effort of the algorithm is the number of eval-
uations of the determinant |X ′X|. We decided not to use the
execution time because it is severely affected by the use of
update formulas, which is outside the scope of this paper.

We tested the effect of four different values of K on the
performance of the CEA. The algorithm was executed 1,000
times for each instance in the benchmark set, each time start-
ing from a different random initial design. Six quality mea-
sures were computed for each set of runs: the minimum,
the average and the maximum D-efficiency of the designs,
and the minimum, the average and the maximum number of
determinant evaluations. The averages of these measures for
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Table 1 Benchmark set of
experiments Small Medium-sized Large

v n v n v n

3 4 11 12 21 44

4 8 12 20 22 68

5 12 13 28 23 24

6 20 14 44 24 36

7 8 15 16 25 52

8 12 16 24 26 80

9 20 17 36 27 28

10 32 18 56 28 44

19 20 29 60

20 32 30 92

Table 2 Effect of the K value
on the average design quality
and the average number of
determinant evaluations of the
CEA

K value D-efficiency Det. evaluations

Min. Avg. Max. Min. Avg. Max.

Small experiments

n/4 85.26 93.44 99.93 70 150 290

n/3 83.11 93.46 99.93 87 322 169

n/2 87.61 93.72 99.96 138 228 474

n 88.43 94.95 99.95 214 350 640

Medium-sized experiments

n/4 88.58 94.51 97.55 543 1,271 2,606

n/3 90.28 94.95 98.12 658 1,498 3,041

n/2 90.92 95.49 98.08 956 2,016 4,341

n 92.97 96.26 98.73 1,450 3,033 6,244

Large experiments

n/4 94.73 96.52 97.34 2,412 5,557 11,958

n/3 95.16 96.71 97.46 2,934 6,665 13,756

n/2 95.78 96.91 97.56 4,172 8,788 19,113

n 96.52 97.18 97.72 6,038 13,421 27,646

each subset of benchmark experiments are shown in Table 2.
First of all, observe that the variability of the D-efficiency
decreases with the size of the experiment. The D-efficiencies
of the designs for small experiments lie within the interval
[85, 100], while for large experiments the D-efficiencies lie
within the interval [94, 98]. This illustrates the drawback
of the D-efficiency explained in Sect. 2. Secondly, observe
that the K value has a considerable impact on the quality of
the designs obtained and on the execution time of the algo-
rithm. For small designs, the average maximumD-efficiency
does not substantially change with the K value, even though
the minimum and the average D-efficiency increase with K .
Hence, small values of K do not negatively affect the effec-
tiveness of the algorithm when it is executedseveral times

starting from different initial designs. However, the trend is
different for medium-sized and large experiments. The K
value has a substantial impact on all D-efficiency measures
for these experiments. It appears that the trade-off between
the execution time of the algorithm and the quality of the
designs obtained is well defined. Small values of K reduce
the execution time of the algorithm but they also reduce its
capacity to find better designs. Additionally, observe that the
CEA cannot find the optimal designs for medium-sized and
large experiments, not even when K = n and the algorithm
explores all the design points. This shows the limited capabil-
ity of theCEAfor generating optimal designs for experiments
with large numbers of factors and observations.
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4.2 Orthogonality-based selection strategy

An orthogonal design is characterized by a 100% D-
efficiency and is achieved when all the columns of the design
matrix are orthogonal. Theoff-diagonal elements of the infor-
mation matrix are equal to zero; consequently, the estimates
of the parameters of the regression model are not correlated
and |X ′X| = nv+1. Any measure of how orthogonal the
columns are is therefore a good indicator of the quality of
the design. In this section, we propose a new selection strat-
egy that uses an orthogonality measure of the design in order
to guide the execution of the CEA. The main objective is to
start the exploration of the design matrix in an area where
an exchange is likely to produce a large improvement in the
D-efficiency, and avoid the exploration of poor exchanges.

For every pair of columns i and j of the designmatrix, such
that 0 ≤ i ≤ v and 0 ≤ j ≤ v, the inner product between the
two columns is given by the elements (X ′X)i, j and (X ′X) j,i .
A global non-orthogonality measure of a column k relative
to the others can be defined as θk = ∑v

m=0(X
′X)2m,k . The

larger the θk value, the less orthogonal the column k is to the
others and therefore the larger its potential for improvement.
The use of the squared value instead of the absolute value
results in a severe penalization for columns that are highly
non-orthogonal. The inclusion of the element (X ′X)0,k in
the definition of θk penalizes the unbalanced columns. This
is useful because orthogonal designs are known to be bal-
anced. The proposed orthogonality measure is very similar
to the E(s2) optimality criterion proposed by Booth and Cox
(1962) for the generation of supersaturated designs. It has
been shown that the minimization of

∑v
k=0 θk is an approx-

imation to the optimization of the A-optimality and the D-
optimality criteria (Nguyen 1996).

In each execution, our modified version of the CEA sorts
the columns of the design matrix in decreasing order of θk .
The CEA then explores the design matrix column by column
in that order. If an exchange that produced an improvement
in the determinant |X ′X| is found when the exploration of a
column has been completed, the current execution is stopped
and a new execution is started. The pseudocode of the CEA
with the orthogonality-based selection strategy is shown in
Algorithm 1. Note that in the implementation for the design
of screening experiments, which is the topic of this paper,
the exchange procedure only exchanges the sign of the coor-
dinate (from −1 to +1, or vice versa).

4.3 Comparison of selection strategies

There exist alternative selection strategies for the CEA the
performances of which are not well documented in the lit-
erature. The first alternative is a best-improvement selec-
tion strategy. Also other simpler first-improvement selection
strategies might avoid the calculation of the prediction vari-

Algorithm 1: CEA with the orthogonality-based selec-
tion strategy

Input: Design matrix X

1 for j ← 1 to v do
2 θ j ← ∑v

i=0(X
′X)2i, j

3 Define (c1, c2, . . . , cv) as a permutation of integers (1, 2, . . . , v)

such that θc1 ≥ θc2 ≥ · · · ≥ θcv
4 d0 ← |X ′X|
5 d ← d0
6 for j ← 1 to v do
7 for i ← 1 to n do
8 exchange(xic j )
9 if |X ′X| > d then

10 d ← |X ′X|
11 else
12 revert_exchange(xic j )

13 if d > d0 then
14 return CEA(X)

ance at each design point, and therefore reduce the computa-
tion time. In this section, we report the results of a computa-
tional experiment carried out in order to determine the best
selection strategy for the design of screening experiments in
terms of design quality and execution time. We tested six
different strategies in the way described in Sect. 4.1:

– Row-based: explores the elements of the design matrix
row by row.

– Column-based: explores the elements of the design
matrix column by column.

– Variance-based: explores the design points in increasing
order of their prediction variance.

– Orthogonality-based: explores the columns of the
design matrix in decreasing order of their global non-
orthogonality measure θk .

– Best-improvement: explores all the elements of the design
matrix and exchanges the one that produces the largest
improvement to the objective function.

– Mildest improvement: explores all the elements of the
design matrix and exchanges the one that produces the
smallest improvement to the objective function.

The first four strategies are first-improvement strategies
and have linear order of time complexity with respect to
the number of elements in the design matrix. The other
two strategies have quadratic order of time complexity. The
results of the computational experiment are shown in Table 3.
We stick to the use of the number of determinant evaluations
as a performance metric because it provides a good approx-
imation to the complete execution time. By doing so, we
focus on the performance differences caused by the selec-
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Table 3 Overall effect of the
selection strategy on the average
design quality and the average
number of determinant
evaluations of the CEA

Strategy D-efficiency Det. evaluations

Min. Avg. Max. Min. Avg. Max.

Linear

Row 93.05 96.23 98.75 2,866 6,019 12,590

Column 93.44 96.18 98.72 3,045 6,188 12,820

Variance 93.30 96.18 98.75 2,804 6,008 12,711

Orthogonality 93.95 96.70 98.75 2,105 4,454 9,137

Quadratic

Best-imp. 93.25 96.38 98.66 77,550 97,827 121,594

Mildest-imp. 93.40 96.38 98.68 78,854 98,517 122,281

Table 4 Breakdown of the
effect of the selection strategy
on the average design quality
and the average number of
determinant evaluations of the
CEA for small, medium-sized
and large experiments

Strategy D-efficiency Det. evaluations

Min. Avg. Max. Min. Avg. Max.

Small experiments

Row 88.94 95.03 99.96 214 366 704

Variance 89.60 94.84 99.91 214 350 592

Orthogonality 90.71 96.43 99.96 118 228 408

Medium-sized experiments

Row 92.97 96.24 98.85 1,386 3,052 6,342

Variance 92.99 96.24 98.85 1,550 3,032 6,568

Orthogonality 93.98 96.37 98.80 1,047 2,051 4,166

Large experiments

Row 96.43 97.19 97.68 6,468 13,509 28,345

Variance 96.57 97.18 97.69 6,130 13,374 28,550

Orthogonality 96.53 97.20 97.70 4,754 10,239 21,092

tion strategy and not by the updated formulas used or any
other implementation detail. Although the execution times
of certain intermediate steps in some selection strategies are
ignored in this approach (for example, the calculation of
the prediction variance at each design point in the variance-
based selection strategy, and the sorting of the columns of the
design matrix according to the orthogonality measure in the
orthogonality-based selection strategy), this has nomeaning-
ful impact on the results. Consequently, an increment of the
number of determinant evaluations can be safely translated
into an increment of the execution time.

It can be observed that, despite the fact that the selec-
tion strategies with quadratic time complexity require much
longer execution times, the quality of the designs obtained
does not substantially differ from the ones obtained by the
selection strategies with linear time complexity. This shows
that the extra computational effort is in vain. Secondly, the
variance-based strategy has a similar performance to the
row-based and column-based strategies, both in terms of

D-efficiency and number of determinant evaluations. This
shows that the use of the prediction variance as a mechanism
to guide the CEA does not provide any added value. Finally,
the orthogonality-based strategywas able to generate slightly
better designs (on average) than the other strategies using a
30% shorter execution time.

Table 4 shows a breakdown of the results in Table 3
for the best selection strategies. It can be observed that the
orthogonality-based strategy on average finds better designs
for small experiments. For medium-sized and large experi-
ments, the three strategies produce designs of very similar
quality. However, the orthogonality-based selection strategy
requires a substantially shorter execution time.

The orthogonality-based selection strategy clearly results
in the best performance of the CEA. The use of the prediction
variance to guide the CEA does not provide any added value
in comparison to simpler strategies, even though thevariance-
based selection strategy has often been used in the literature
as an alternative to first-improvement and best-improvement
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strategies. The fact that the three strategies lead to designs of
similar quality for large-scale experiments suggests that the
CEAcannot be improved bymodifying the selection strategy.

5 Iterated local search algorithm

One of the weakest aspects of the CEA is its tendency to get
trapped in locally optimal designs. To overcome this issue,
it is usual to execute the algorithm several times, each time
starting from a different randomly generated design. In this
section, we propose an ILS algorithm that uses a more selec-
tive strategy than the previous random sampling of initial
solutions. The main premise of this algorithm is that better
solutions are probably found in the space that surrounds the
current locally optimal solution, but not close enough to be
reachable by the neighborhood structure of the local search.
The more selective strategy is also motivated by the obser-
vation that a locally optimal solution is generally already a
quite good solution, so that it is sensible to retain at least
some part of that structure when it is modified. Therefore, in
contrast to completely disregarding the locally optimal solu-
tion, as it is done by multi-start algorithms, the ILS performs
a small modification to the locally optimal solution called
perturbation. The slightly modified solution is then used as
an initial solution for the next iteration of the local search.
The size of the perturbation is a key factor of the algorithm
because it determines what portion of the locally optimal
solution is altered, i.e. how considerable the modification is.
If the perturbation is too large, important information con-
tained within the current locally optimal solution is lost and
the algorithm behaves as if a random restart were used. On
the other hand, if the perturbation is too small, the algo-
rithm is not able to escape from the current local optimum
and the iterative process will not add any value. The general
pseudocode of the ILS is shown in Algorithm 2.

Algorithm 2: Iterated local search algorithm

Input: An initial solution S0

1 Sbest ←− LocalSearch(S0)
2 while ¬ TerminationCondition do
3 Spert ←− Perturb(Sbest )
4 Spert ← LocalSearch(Spert )
5 if AcceptanceCriterion(Sbest , Spert ) then
6 Sbest ← Spert

7 return Sbest

In order to implement an ILS algorithm for the optimal
design of experiments, it is necessary to define the mecha-
nism used to generate the initial design, the local search algo-
rithm, the perturbation operator, the termination condition of

the algorithm and the acceptance criterion used to update the
current design. In the algorithm presented in this paper, the
local search procedure is the CEA with the orthogonality-
based selection strategy. The termination condition stops the
execution of the algorithm when a fixed number of itera-
tions has been performedwithout finding a better design. The
acceptance criterion updates the current design only when a
new better design has been found. The two remaining build-
ing blocks are explained in the following sections.

5.1 Initial design

We developed a new greedy algorithm for the construction
of initial designs. The algorithm iteratively adds points in
such a way that the columns of the design matrix remain
as orthogonal as possible. This approach is similar in spirit
to that proposed by Mandal and Koukouvinos (2014) for
the generation of optimal multi-level supersaturated designs
using integer programming.

The first point of the design is randomly chosen, which
enables the algorithm to obtain different initial designs for the
same experiment. The algorithm then generates the remain-
ing points one by one, coordinate by coordinate, considering
the orthogonality of the partial design built so far. At each
step, the algorithm identifies the two columns that are least
orthogonal, i.e. the ones with the maximum absolute inner
product. The coordinates corresponding to these twocolumns
are assigned values that reduce the inner product and make
the columnsmore orthogonal. Eachof the remaining columns
are sorted in decreasing order of the non-orthogonality mea-
sure θk . The resulting column ranking defines the order in
which the coordinates are assigned values. The value chosen
for each coordinate is the one that minimizes θk .

The following notation is used to explain the initial design
construction algorithm. Let X1:k,i be a column vector that
contains the first k elements of the i-th column of the partial
design matrix. Let X1:k,m · X1:k,n be the inner product of
the m-th and the n-th column vectors. Finally, let θl[k] be the
global non-orthogonality measure of the l-th column X1:k,l .
The pseudocode of the initial design construction algorithm
is shown in Algorithm 3.

In contrast to other algorithms for the generation of ini-
tial designs available in the literature (Atkinson and Donev
1989; Lejeune 2003), the proposed algorithm involves a pure
coordinate-based approach. It has a polynomial time com-
plexity �(nv2), which makes it perfectly useful for the gen-
eration of designs for large-scale experiments. We compared
the performance of the newly proposed greedy algorithm to
that of a procedure that uses random initial designs. The
experiment was executed in the same way as the experi-
ments described in previous sections. The results are shown
in Table 5. The execution times are not shown because they
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Algorithm 3: Initial design construction algorithm

Output: Initial design matrix X

1 for i ← 1 to v do
2 x1i ← Random level

3 for k ← 2 to n do
4 Find integers a, b ∈ {1, 2, . . . , v} such a �= b and

|X1:k−1,a · X1:k−1,b| is maximum
5 xka, xkb ← Levels that minimize |X1:k,a · X1:k,b|
6 Define (c1, c2, . . . , cv−2) as a permutation of integers ∈

{1, 2, . . . , v} \ {a, b} such that
θc1[k−1] ≥ θc2[k−1] ≥ · · · ≥ θcv−2[k−1]

7 for i ← 1 to v − 2 do
8 xkci ← Level that minimizes θci[k]

Table 5 Comparison of the D-efficiency of the designs obtained by the
greedy construction algorithm and a random procedure

Algorithm Min. Avg. Max.

Random 55.25 66.38 78.80

Greedy 85.52 93.84 97.03

are negligible. It can be observed that the greedy algorithm
obtains designs with a much higher quality.

5.2 Perturbation operator

The operator used to perturb the locally optimal designs
exchanges coordinates of the design matrix. We developed
two versions of the operator. The first version randomly
selects the coordinates that are going to be exchanged. The
second versionmodifies columns of the design that have large
values of θk with higher probability. In the second approach,
a column i is randomly selected, and it is modified with a
probability θi/max(θk), for 1 ≤ k ≤ v. If the selected col-
umn is modified, the coordinate to be exchanged is randomly
selected. If the selected column is not modified, another col-
umn is randomly selected and evaluated for a possible mod-
ification.

The size of the perturbation is defined by the number of
coordinates that are exchanged. This number is selected ran-
domly in each execution from a discrete uniform distribution
on the set {1, 2, . . . , λ}. The λ value is the upper bound of
the number of coordinates that can be exchanged and is the
only parameter that defines the size of the perturbation oper-
ator. Additionally, two mechanisms for the adjustment of the
perturbation size, given by λ, were studied. The first one is a
simple static approach: the size of the perturbation stays fixed
during the entire execution of the algorithm. The second one
is a reactive approach: the algorithm dynamically modifies
λ according to the results of the exploration. Every time the
algorithm finds a better design, the size of the perturbation is

set to the minimum value of 1 in order to explore the imme-
diate neighborhood of the design. If no better design is found
during the next few iterations, λ is progressively increased in
order to augment the probability of escaping from the locally
optimal design. The type of the perturbation operator, the size
λ of the perturbation and the mechanism for its adjustment
are input parameters of the algorithm.

6 Parameter tuning and statistical analysis

In this section, we describe the study carried out to identify
the parameters that impact the execution of the ILS algorithm
and to determine the combination of parameters that yields
the best performance. The following parameterswere studied
using a full factorial experiment:

– The number of iterations the algorithm is allowed to exe-
cute without finding a better design (num_it).

– The size λ of the perturbation operator (pert_size).
– The mechanism for the adjustment of the perturbation
size (pert_adj), that can be either static (stat) or
reactive (react).

– The perturbation operator (pert_opt), that can be
either random (rand) or orthogonality-based (orth).

– The number of restarts of the algorithm (num_rest).

The different levels tested for each parameter are shown
in Table 6. Note that the perturbation size is expressed
in percentages of the number of coordinates in the design
matrix (v × n). Each configuration was executed once for
each instance of the benchmark set, resulting in a total of
22×32×5×28 = 5,040 observations. For each observation,
the D-efficiency of the design obtained and the number of
determinant evaluations the algorithm performedwere deter-
mined. For each of these measures, a mixed-effects analysis
of variance (ANOVA) was conducted using the statistical
software JMP. Both models use a random effect for each
instance of the benchmark set to indicate that all the mea-
surements for the same instance are correlated. The p values
of the F-tests that determine the significance of each para-
meter and interaction in the ANOVA models are shown in
Table 7. A bold p value indicates that the parameter or inter-
action has a significant impact.

The parameters num_rest and num_it have a signif-
icant impact on both measures. These parameters mainly
define the execution time of the algorithm and it is reasonable
to think that the larger their values, the better the quality of the
designs obtained. It is also reasonable to expect pert_size
to have a significant impact. The larger the perturbation, the
larger the portion of the solution solution space explored, but
also the larger the time that is required by theCEA to improve
the modified design.
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Table 6 Parameters and levels tested

Parameter Levels

num_rest 1, 10, 25

num_it 100, 1,000, 5,000

pert_size 1, 5, 10, 15, 20%

pert_adj stat, react

pert_opt rand, orth

Table 7 p values of the F-tests to determine the significance of each
term in the ANOVA models

Factor/interaction D-efficiency Det. evaluations

num_rest < 0.0001 < 0.0001

num_it < 0.0001 < 0.0001

pert_size < 0.0001 < 0.0001

pert_adj 0.0754 < 0.0001

pert_opt 0.0130 0.6759

num_rest × num_it 0.0423 < 0.0001

num_rest × pert_size < 0.0001 < 0.0001

num_rest × pert_adj 0.1666 < 0.0001

num_rest × pert_opt 0.8495 0.7599

num_it × pert_size 0.0204 < 0.0001

num_it × pert_adj 0.5597 < 0.0001

num_it × pert_opt 0.6119 0.6345

pert_size × pert_adj 0.0606 0.0013

pert_size × pert_opt 0.4214 0.9991

pert_adj × pert_opt 0.7596 0.7111

One of the most important aspects to be determined with
the statistical analysis is the effectiveness of both diversifi-
cation mechanisms, the number of restarts (num_rest) and
the size of the perturbation operator (pert_size), and the
interaction between them. Both of these parameters and their
interactions are highly significant in both ANOVA models.
The average D-efficiency and the average number of deter-
minant evaluations for each combination of levels for both
parameters are shown in Fig. 1. It can be observed that, even
though the application of the perturbation operator consid-
erably improves the overall performance of the algorithm,
the use of the restart mechanism is still necessary. Never-
theless, when num_rest exceeds 10, the increase in the
quality of the designs obtained is not substantial. Addition-
ally, the size of the perturbation operator that leads to the
best algorithm performance is pert_size = 10%. Larger
values of pert_size only increase the execution time of
the algorithm and not the quality of the designs obtained.

Figure 2 shows the average D-efficiency and the average
number of determinant evaluations for each level of the para-
meter num_it. This parameter is highly significant in both
ANOVAmodels and appears in two interactions that are bor-

Fig. 1 Influence of the interaction num_rest× pert_size on the
design quality and the number of determinant evaluations

Fig. 2 Influence of the parameter num_it on the design quality and
the number of determinant evaluations

derline significant. It can be observed that the increase in
the design quality attenuates when the number of iterations
exceeds 1,000, while the number of determinant evaluations
increases linearly.

Figures 3 and 4 show the average D-efficiency and the
average number of determinant evaluations for each level of
the parameters pert_adj and pert_opt, respectively. It
can be observed that the reactive mechanism for the adjust-
ment of the perturbation size (react) results in designs with
a quality that is comparable to the quality of the ones obtained
by the staticmechanism (stat).However, it reduces the exe-
cution time of the algorithm by half (p value < 0.0001).
This shows the great importance of the reactive mecha-
nism for the reduction of the execution time of the algo-
rithm. The orthogonality-based version of the perturbation

123



26 Stat Comput (2016) 26:15–28

Fig. 3 Influence of the parameter pert_adj on the design quality
and the number of determinant evaluations

Fig. 4 Influence of the parameter pert_opt on the design quality
and the number of determinant evaluations

operator (orth) obtains designs with slightly better quality
(p value = 0.0130) using an execution time comparable to
the one used by the random version (rand).

The analysis of variance suggests using the following
settings for the parameters of our algorithm:num_rest=10,
pert_size=10%, pert_adj=react and pert_opt
=orth. The number of iterations (num_it) is the parameter
by means of which the user can specify the desired execution
time of the algorithm.

7 ILS versus the CEA implemented in commercial
software

In this section, we compare the performance of the ILS algo-
rithm to the implementation of the CEA in the statistical
package JMP and described in Chapter 2 of Goos and Jones
(2011). Unlike the original CEA proposed by Meyer and
Nachtsheim, the CEA implemented in JMP uses a row-based
selection strategy. Since the JMP software does not report the
number of determinant evaluations performed for the con-
struction of the design, we rely on the execution time as the
performancemetric tomeasure the computational effort. The
comparison using this metric is not completely fair because
JMP, being a specialized statistical software, implements
update formulas for matrix determinants in order to reduce

Fig. 5 Performance comparison between the ILS algorithm and the
CEA found in the statistical software package JMP for all experiments
in the benchmark set

Fig. 6 Number of optimal designs found by the ILS algorithm and the
CEA found in the statistical software package JMP

the execution time of the algorithm (see, for instance, Atkin-
son et al. 2007; Meyer and Nachtsheim 1995). Hence, our
comparison favors the JMP implementation of the CEA.

The number of restarts is the only parameter that can
be specified in JMP’s interface in order to define the com-
putational effort of the algorithm. We compute designs for
the benchmark set of experiments using 100, 1,000, 5,000,
10,000, 50,000 and 250,000 restarts, and compare the results
with the ones obtained by the ILS using the parameter config-
uration identified in Sect. 6. The numbers of iterations speci-
fied for the ILS algorithmwere the ones shown inTable 6. The
D-efficiency and execution time, averaged over all instances
in the benchmark set, are shown for each algorithm in Fig. 5.

It is clear that the proposed ILS algorithm outperforms
the CEA found in JMP. Even with very small computational
effort, the ILS finds designs with a higher D-efficiency than
does the longest execution of the CEA algorithm in JMP.
Figure 6 shows the number of optimal designs found by each
algorithm for the experiments in the benchmark set. The ILS
algorithm is able to find three optimal designs more than the
CEA in JMP. These designs correspond to the experiment
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Fig. 7 Performance comparison between the ILS algorithm and the
CEAfound in the statistical software package JMP for large experiments
in the benchmark set

with 13 factors and 28 observations, the one with 14 factors
and 44 observations and that with 16 factors and 24 obser-
vations. The CEA in JMP is able to find 12 optimal designs
while performing the most demanding execution (with the
longest execution time). The ILS algorithm is, however, able
to match this number of optimal designs found while per-
forming the execution with the shortest execution time.

Figure 7 shows the average D-efficiency and execution
time of each algorithm for the design of large experiments
only. Observe that the ILS algorithm is able to produce
designswith an averageD-efficiency that is almost 1%higher
than that of the designs produced by the CEA found in JMP.
Considering the properties of the D-efficiency when used as
a quality measure for large experimental designs (described
in Sect. 2 and shown in Sect. 4.1), this 1% improvement is
substantial. Additionally, observe that, when increasing the
execution time of the algorithms, the improvement in the
average D-efficiency achieved by the ILS algorithm is con-
siderably larger than that achieved by the CEA found in JMP.
The speed of the ILS algorithm could even be improved by
developing new update formulas similar to those proposed
in Arnouts and Goos (2010), Goos and Vandebroek (2003)
and implemented in JMP. We leave this for future research,
as this paper concentrates on strategies for making the CEA
more effective.

8 Conclusions

In this paper, we have dealt with the construction of D-
optimal experimental designs for main-effects models. An
analysis of the coordinate-exchange algorithm led to two
important conclusions. First, restricting the number of design
points considered for replacement in each iteration of the
algorithm, usually labelled K in the literature, has a signifi-
cant negative impact on the quality of the designs obtained.

In other words, the exploration of a small subset of design
points reduces the execution time of the algorithm, but it also
reduces the capability of finding good designs. Secondly,
even though most of the available algorithms in the litera-
ture (both point-based and coordinate-based) use the predic-
tion variance at the design points to guide the optimization,
we provide strong evidence that this strategy does not add
any value to the performance of the algorithm. Instead, we
propose a new selection strategy for the algorithm based on
the orthogonality of the columns of the design matrix. This
strategy allows the construction of better designs for small
experiments and reduces the execution time of the algorithm
by about 30% for medium-sized and large experiments.

We also propose a new iterated local search algorithm for
the optimal design of experiments. The orthogonality-based
strategy is included in two main components of the iterated
local search: the greedy algorithm for the construction of ini-
tial designs and the perturbation operator. Additionally, the
metaheuristic uses a reactive strategy to dynamically modify
the size of the perturbation during the execution of the algo-
rithm.We performed an extensive statistical analysis in order
to identify the important components of the algorithm and
to validate their effectiveness. The proposed algorithm out-
performs the most important commercial statistical package
for optimal design of experiments in terms of both execution
time and design quality, especially for experimentswith large
numbers of factors and observations.

The iterated local search algorithm can also be applied
for the generation of experimental designs that involve more
general models (i.e. linear models that include interaction
effects and/or quadratic effects, and even for non-linear mod-
els). This is because the algorithm only modifies the original
design matrix, which is independent of the model expan-
sion f ′(x) of the design points. The orthogonality measure
might also be useful to guide the coordinate-exchange algo-
rithm while considering other optimality criteria. Orthogo-
nality is a property that is desirable also in the context of
A-, V- and G-optimality. Nevertheless, the implementation
of the orthogonality-based selection strategy for more gen-
eral models is not straightforward. It is necessary to develop
a more general orthogonality measure that considers the par-
ticular structure of the extended design matrix in the model.
One possible extension could be to consider all the columns
of the design matrix that involve the factor being evaluated.
By doing so, it would be possible to have a general mea-
sure of the degree of non-orthogonality presumably caused
by the factor’s levels. The interchange algorithm proposed
by Trinca and Gilmour (2000) for blocking response surface
designs guides its execution using a similar strategy. Never-
theless, it is important to point out that the D-efficiency gain
achieved by the iterated local search algorithm (with respect
to the regular coordinate-exchange algorithm) is not entirely
due to the use of the orthogonalitymeasure. The quality of the
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designs obtained by the iterated local search algorithm only
slightly decreases when an alternative selection strategy (not
based on orthogonality) is used, but it remains better than that
of the designs generated by the regular coordinate-exchange
algorithm.We believe therefore that exploring the usefulness
of our iterated local search algorithm for models other than
main-effects models would be very useful.

Acknowledgments We acknowledge the financial support of the
Flemish Fund for Scientific Research (FWO).

References

Arnouts, H., Goos, P.: Update formulas for split–plot and block designs.
Comput. Stat. Data Anal. 54(12), 3381–3391 (2010)

Atkinson, A.C., Donev, A.N.: The construction of exact D-optimum
experimental designs with application to blocking response surface
designs. Biometrika 76(3), 515 (1989)

Atkinson, A.C., Donev, A.N., Tobias, R.: Optimum Experimental
Designs, with SAS, vol. 34. Oxford University Press, Oxford (2007)

Booth, K.H.V., Cox, D.R.: Some systematic supersaturated designs.
Technometrics 4(4), 489–495 (1962)

Borkowski, J.J.: Using a genetic algorithm to generate small exact
response surface designs. J. Probab. Stat. Sci. 1(1), 65–88 (2003)

Cawse, J.N.: The combinatorial challenge. In: Cawse, J.N. (ed.) Exper-
imental Design for Combinatorial and High Throughput Materials
Development, pp. 1–26. Wiley, Hoboken, NJ (2003)

Cook, R.D., Nachtsheim, C.J.: A comparison of algorithms for con-
structing exact D-optimal designs. Technometrics 22(3), 315–324
(1980)

Davis, L. (ed.): Handbook of Genetic Algorithms, vol. 115. Van Nos-
trand Reinhold, New York (1991)

Fedorov, V.V.: Theory of Optimal Experiments. Academic Press, New
York (1972)

Glover, F.W.: Future paths for integer programming and links to artificial
intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)

Goos, P., Vandebroek,M.:D-optimal split–plot designswith given num-
bers and sizes of whole plots. Technometrics 45(3), 235–245 (2003)

Goos, P., Jones, B.: Optimal Design of Experiments: A Case Study
Approach. Wiley, New York (2011)

Haines, L.M.: The application of the annealing algorithm to the con-
struction of exact optimal designs for linear-regressionmodels. Tech-
nometrics 29(4), 439–447 (1987)

Heredia-Langner, A., Carlyle, W.M., Montgomery, D.C., Borror, C.M.,
Runger, G.C.: Genetic algorithms for the construction of D-optimal
designs. J. Qual. Technol. 35, 28–46 (2003)

Johnson, M.E., Nachtsheim, C.J.: Some guidelines for constructing
exact D-optimal designs on convex design spaces. Technometrics
25(3), 271–277 (1983)

Jones, B.: Computer aided designs for practical experimentation. Ph.D.
thesis, University of Antwerp, Faculty of Applied Economics (2008)

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated
annealing. Science 220(4598), 671 (1983)

Lejeune, M.A.: Heuristic optimization of experimental designs. Eur. J.
Oper. Res. 147(3), 484–498 (2003)

Li, W.W., Wu, C.F.J.: Columnwise–pairwise algorithms with applica-
tions to the construction of supersaturated designs. Technometrics
39(2), 171–179 (1997)

Lourenco, H.R., Martin, O.C., Stützle, T.: Iterated local search. In:
Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics,
pp. 320–353. Springer, Berlin (2003)

Mandal, B.N., Koukouvinos, C.: Optimal multi-level supersaturated
designs through integer programming. Stat. Probab. Lett. 84, 183–
191 (2014)

Meyer, R.K., Nachtsheim, C.J.: Simulated annealing in the construction
of exact optimal design of experiments. Am. J. Math. Manag. Sci. 8,
329–359 (1988)

Meyer, R.K., Nachtsheim, C.J.: The coordinate-exchange algorithm
for constructing exact optimal experimental designs. Technometrics
37(1), 60–69 (1995)

Michalewicz, Z., Fogel, D.B.: How to solve it: modern heuristics.
Springer, New York (2004)

Mitchell, T.J.: Computer construction of “D-optimal” first-order
designs. Technometrics 16(1), 211–220 (1974)

Mitchell, T.J.: An algorithm for the construction of “D-optimal” exper-
imental designs. Technometrics 16(2), 203–210 (1974)

Montepiedra, G., Myers, D., Yeh, A.B.: Application of genetic algo-
rithms to the construction of exact D-optimal designs. J. Appl. Stat.
25(6), 817–826 (1998)

Montgomery, D.C., Jennings, C.L.: An overview of industrial screening
experiments. In: Dean, A., Lewis, S. (eds.) Screening: Methods for
Experimentation in Industry, Drug Discovery, and Genetics, pp. 1–
20. Springer, New York (2006)

Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New
York (2008)

Nguyen, N.K., Miller, A.J.: A review of some exchange algorithms for
constructing discrete D-optimal designs. Comput. Stat. Data Anal.
14(4), 489–498 (1992)

Nguyen, N.K.: An algorithmic approach to constructing supersaturated
designs. Technometrics 38(1), 69–73 (1996)

Plackett, R.L., Burman, J.P.: The design of optimum multifactorial
experiments. Biometrika 33(4), 305–325 (1946)

Sörensen, K., Glover, F.: Metaheuristics. In: Gass, S., Fu, M. (eds.)
Encyclopedia of Operations Research andManagement Science, 3rd
edn. Springer, London (2013)

Sung Jung, J., Jin Yum, B.: Construction of exact D-optimal designs by
tabu search. Comput. Stat. Data Anal. 21(2), 181–191 (1996)

Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley,
New York (2009)

Trinca, L.A., Gilmour, S.G.: An algorithm for arranging response sur-
face designs in small blocks. Comput. Stat. Data Anal. 33(1), 25–43
(2000). Erratum 40(3), 475 (2002)

Welch, W.J.: Algorithmic complexity: three NP-hard problems in com-
putational statistics. J. Stat. Comput. Simul. 15(1), 17–25 (1982)

Wu, C.F.J., Hamada, M.: Experiments: Planning, Analysis, and Para-
meter Design Optimization. Wiley, New York (2000)

123


	Optimal design of large-scale screening experiments: a critical look at the coordinate-exchange algorithm
	Abstract 
	1 Introduction
	2 Problem description and mathematical formulation
	3 Existing design construction algorithms
	3.1 Point-based algorithms
	3.2 Coordinate-based algorithms
	3.3 Genetic algorithms

	4 Selection strategy of the coordinate-exchange algorithm
	4.1 Original selection strategy
	4.2 Orthogonality-based selection strategy
	4.3 Comparison of selection strategies

	5 Iterated local search algorithm
	5.1 Initial design
	5.2 Perturbation operator

	6 Parameter tuning and statistical analysis
	7 ILS versus the CEA implemented in commercial software
	8 Conclusions
	Acknowledgments
	References




