
Composing Counterpoint Music With
Variable Neighborhood Search

D. Herremans & K. Sörensen

ORBEL26, February 2-3, 2012

University of Antwerp

Operations Research Group

ANT/OR

Overview

Computer aided composing (CAC)

Variable Neigborhood Search

Experiments & Results

Implementation

Conclusion

Computer aided composing (CAC)

Composing music = combinatorial optimization problem

I Music → combination of notes

I “Good” music → fits a style as well as possible

I Formalized and quantified “rules” of a style → objective
function

Counterpoint

I Polyphonic classical music

I Inspired Bach, Haydn,. . .

I One of the most formally defined musical styles
→ Rules written by Fux in 1725

1st species counterpoint

I Counterpoint & Cantus firmus

44
44

I Represented as 2 vectors with midi values
[60 65 64 62 60 64 65 67 67 69 62 64 64 60 59 60]

5th species counterpoint

I Counterpoint & Cantus firmus

44
44

I Represented as a vector of note objects, each with:
I Pitch: midi value
I Duration
I Beat number
I Measure number
I Tied?

Quantifying musical quality

Examples of rules:

I Each large leap should be followed by stepwise motion in the
opposite direction

I Half notes should always be consonant on the first beat, unless
they are suspended and continued stepwise and downward

I All perfect intervals should be approached by contrary or
oblique motion

→ 19 vertical and 19 horizontal subscores between 0 and 1

Quantifying musical quality

f(s) =
∑
i

ai.subscoreHi (s)︸ ︷︷ ︸
horizontal aspect

+
∑
j

bj .subscoreVj (s)︸ ︷︷ ︸
vertical aspect

(1)

Quantifying musical quality

I Weights ai and bj
I Specified at input

I Emphasize subscore from start

I Adaptive weights mechanism
I Increase weight of subscore with highest value
I Keeps the search in the right direction

Variable Neigborhood Search

I Local search with 3 neighborhoods
I Selection

I Steepest descent
I Based on adaptive score fa(s)

Ni Name Description

Nsw Swap Swap two notes
Nc1 Change1 Change one note
Nc2 Change2 Change two notes

Variable Neigborhood Search

I Excluded framents
I Tabu list
I Infeasible

I Perturbation
I Change r% of the notes randomly

I Adaptive weights mechanism

I Update best solution sbest, based on original score f(sbest)

LS Swap NH

LS Change1 NH

LS Change2 NH

Current s
<

s at A?

Change r% of
notes randomly

Yes
No

Update s best

Generate random s

A

Max iters
reached?

Update
adaptive weights

Iters ++

No

Exit

Exit

Optimum
found?

yes

Yes

Experiments & Results

I Full factorial experiment, n=2304

Parameter Values Nr. of levels
Nsw - Swap on with ttsw=0, ttsw= 1

16 , ttsw= 1
8 , off 4

Nc1 - Change1 on with ttc1=0, ttc1= 1
16 , ttc1= 1

8 , off 4
Nc2 - Change2 on with ttc2=0, ttc2= 1

16 , ttc2= 1
8 , off 4

Random move 1
4 changed, 1

8 changed, off 3
Adaptive weights on, off 2
Max. iterations 5, 20, 50 3
Length of music 16, 32 measures 2

Experiments & Results
I Multi-Way ANOVA model with interaction effects, using R
I R2 = 0.9642

Parameter Df Sum Sq Mean Sq F value Prob (> F)

Nc1 1 155.73 155.73 4857.6450 < 2.2e−16

Nc2 1 238.40 238.40 7436.5417 < 2.2e−16

Nsw 1 69.13 69.13 2156.2797 < 2.2e−16

randsize 2 38.09 19.05 594.1391 < 2.2e−16

maxiters 2 9.30 4.65 145.0207 < 2.2e−16

ttc1 2 0.05 0.02 0.7588 0.468333
ttc2 2 0.15 0.08 2.3595 0.094707
ttsw 2 0.08 0.04 1.3150 0.268681
adj. weights 1 0.30 0.30 9.3497 0.002257

Experiments & Results

I Mean plot for the size of the random jump

0 10 20
0.6

0.8

1

1.2

Random size (in %)

S
co

re

0 10 20

100

200

T
im

e
(s

)

Optimal parameter settings

Parameter Value

Nsw - Swap on with ttsw=0
Nc1 - Change1 on with ttc1=1

4
Nc2 - Change2 on with ttc2=1

2
Random move 1

8 changed
Adaptive weights on
Max. number of iterations 50

Implementation

I C++ → VNS

I JavaScript using the QtScript engine → MuseScore plugin
I Input:

I Key (i.e., G# minor)
I Weights for each subscores
I VNS parameters

I Result: MusicXML

Implementation

Results
I Example of a generated fragment with score 0.556776.

44
44

12

Conclusion

The fifth species counterpoint rules have been quantified and an
efficient algorithm has been implemented to compose this style of
music

Future research:
I More complex music:

I Different styles
I More parts

I Analyse DB of existing music and extract composer
characteristics

I Compare the VNS to other algorithms, e.g. genetic algorithm

Composing Counterpoint Music With
Variable Neighborhood Search

D. Herremans & K. Sörensen

ORBEL26, February 2-3, 2012

University of Antwerp

Operations Research Group

ANT/OR

	Computer aided composing (CAC)
	Variable Neigborhood Search
	Experiments & Results
	Implementation
	Conclusion

