

# Composing Counterpoint Music With Variable Neighborhood Search

D. Herremans & K. Sörensen ORBEL26, February 2-3, 2012





### Overview

#### Computer aided composing (CAC)

Variable Neigborhood Search

Experiments & Results

Implementation

Conclusion



## Computer aided composing (CAC)

Composing music = combinatorial optimization problem

- $\blacktriangleright$  Music  $\rightarrow$  combination of notes
- $\blacktriangleright$  "Good" music  $\rightarrow$  fits a style as well as possible
- $\blacktriangleright$  Formalized and quantified "rules" of a style  $\rightarrow$  objective function



### Counterpoint

- Polyphonic classical music
- Inspired Bach, Haydn,...
- ► One of the most formally defined musical styles → Rules written by Fux in 1725



### 1st species counterpoint

#### Counterpoint & Cantus firmus



Represented as 2 vectors with midi values
[60 65 64 62 60 64 65 67 67 69 62 64 64 60 59 60]



## 5th species counterpoint

#### Counterpoint & Cantus firmus



- Represented as a vector of note objects, each with:
  - Pitch: midi value
  - Duration
  - Beat number
  - Measure number
  - ► Tied?



## Quantifying musical quality

#### Examples of rules:

- Each large leap should be followed by stepwise motion in the opposite direction
- Half notes should always be consonant on the first beat, unless they are suspended and continued stepwise and downward
- All perfect intervals should be approached by contrary or oblique motion
- $\rightarrow$  19 vertical and 19 horizontal subscores between 0 and 1



## Quantifying musical quality

$$f(s) = \underbrace{\sum_{i} a_{i}.\mathsf{subscore}_{i}^{H}(s)}_{\mathsf{horizontal aspect}} + \underbrace{\sum_{j} b_{j}.\mathsf{subscore}_{j}^{V}(s)}_{\mathsf{vertical aspect}} \tag{1}$$



## Quantifying musical quality

- Weights  $a_i$  and  $b_j$
- Specified at input
  - Emphasize subscore from start
- Adaptive weights mechanism
  - Increase weight of subscore with highest value
  - Keeps the search in the right direction



## Variable Neigborhood Search

#### Local search with 3 neighborhoods

- Selection
  - Steepest descent
  - Based on adaptive score  $f^a(s)$

| $N_i$    | Name    | Description      |  |
|----------|---------|------------------|--|
| $N_{sw}$ | Swap    | Swap two notes   |  |
| $N_{c1}$ | Change1 | Change one note  |  |
| $N_{c2}$ | Change2 | Change two notes |  |



## Variable Neigborhood Search

#### Excluded framents

- Tabu list
- Infeasible
- Perturbation
  - ► Change r% of the notes randomly
- Adaptive weights mechanism
- Update best solution  $s_{\text{best}}$ , based on original score  $f(s_{\text{best}})$





## Experiments & Results

#### ▶ Full factorial experiment, n=2304

| Parameter          | Values                                                                     | Nr. of levels |
|--------------------|----------------------------------------------------------------------------|---------------|
| $N_{sw}$ - Swap    | on with $tt_{sw}=0$ , $tt_{sw}=\frac{1}{16}$ , $tt_{sw}=\frac{1}{8}$ , off | 4             |
| $N_{c1}$ - Change1 | on with $tt_{c1}=0$ , $tt_{c1}=\frac{1}{16}$ , $tt_{c1}=\frac{1}{8}$ , off | 4             |
| $N_{c2}$ - Change2 | on with $tt_{c2}=0$ , $tt_{c2}=\frac{1}{16}$ , $tt_{c2}=\frac{1}{8}$ , off | 4             |
| Random move        | $\frac{1}{4}$ changed, $\frac{1}{8}$ changed, off                          | 3             |
| Adaptive weights   | on, off                                                                    | 2             |
| Max. iterations    | 5, 20, 50                                                                  | 3             |
| Length of music    | 16, 32 measures                                                            | 2             |



## Experiments & Results

- Multi-Way ANOVA model with interaction effects, using R
- ▶  $R^2 = 0.9642$

| Parameter       | Df | Sum Sq | Mean Sq | F value   | Prob (> $F$ )  |
|-----------------|----|--------|---------|-----------|----------------|
| N <sub>c1</sub> | 1  | 155.73 | 155.73  | 4857.6450 | $< 2.2e^{-16}$ |
| $N_{c2}$        | 1  | 238.40 | 238.40  | 7436.5417 | $< 2.2e^{-16}$ |
| $N_{sw}$        | 1  | 69.13  | 69.13   | 2156.2797 | $< 2.2e^{-16}$ |
| randsize        | 2  | 38.09  | 19.05   | 594.1391  | $< 2.2e^{-16}$ |
| maxiters        | 2  | 9.30   | 4.65    | 145.0207  | $< 2.2e^{-16}$ |
| $tt_{c1}$       | 2  | 0.05   | 0.02    | 0.7588    | 0.468333       |
| $tt_{c2}$       | 2  | 0.15   | 0.08    | 2.3595    | 0.094707       |
| $tt_{sw}$       | 2  | 0.08   | 0.04    | 1.3150    | 0.268681       |
| adj. weights    | 1  | 0.30   | 0.30    | 9.3497    | 0.002257       |



## Experiments & Results

#### Mean plot for the size of the random jump





## Optimal parameter settings

| Parameter                 | Value                           |  |
|---------------------------|---------------------------------|--|
| N <sub>sw</sub> - Swap    | on with $tt_{sw}=0$             |  |
| $N_{c1}$ - Change1        | on with $tt_{c1} = \frac{1}{4}$ |  |
| $N_{c2}$ - Change2        | on with $tt_{c2} = \frac{1}{2}$ |  |
| Random move               | $\frac{1}{8}$ changed           |  |
| Adaptive weights          | on                              |  |
| Max. number of iterations | 50                              |  |



### Implementation

- $\blacktriangleright \ \mathsf{C}{++} \to \mathsf{VNS}$
- $\blacktriangleright$  JavaScript using the QtScript engine  $\rightarrow$  MuseScore plugin
- ► Input:
  - ► Key (i.e., G# minor)
  - Weights for each subscores
  - VNS parameters
- Result: MusicXML



### Implementation





### Results

#### • Example of a generated fragment with score 0.556776.





### Conclusion

The fifth species counterpoint rules have been quantified and an efficient algorithm has been implemented to compose this style of music

#### Future research:

- More complex music:
  - Different styles
  - More parts
- Analyse DB of existing music and extract composer characteristics
- ► Compare the VNS to other algorithms, e.g. genetic algorithm



# Composing Counterpoint Music With Variable Neighborhood Search

D. Herremans & K. Sörensen ORBEL26, February 2-3, 2012

