
Composing Counterpoint Music With
Variable Neighborhood Search

D. Herremans & K. Sörensen

ORBEL26, February 2-3, 2012

University of Antwerp

Operations Research Group

ANT/OR

Overview

Computer aided composing (CAC)

Variable Neigborhood Search

Experiments & Results

Implementation

Conclusion

Computer aided composing (CAC)

Composing music = combinatorial optimization problem

I Music → combination of notes

I “Good” music → fits a style as well as possible

I Formalized and quantified “rules” of a style → objective
function

Counterpoint

I Polyphonic classical music

I Inspired Bach, Haydn,. . .

I One of the most formally defined musical styles
→ Rules written by Fux in 1725

1st species counterpoint

I Counterpoint & Cantus firmus


 

 
 
 

44 
44 

I Represented as 2 vectors with midi values
[60 65 64 62 60 64 65 67 67 69 62 64 64 60 59 60]

5th species counterpoint

I Counterpoint & Cantus firmus


44
44







   

 
     


       

 
    

I Represented as a vector of note objects, each with:
I Pitch: midi value
I Duration
I Beat number
I Measure number
I Tied?

Quantifying musical quality

Examples of rules:

I Each large leap should be followed by stepwise motion in the
opposite direction

I Half notes should always be consonant on the first beat, unless
they are suspended and continued stepwise and downward

I All perfect intervals should be approached by contrary or
oblique motion

→ 19 vertical and 19 horizontal subscores between 0 and 1

Quantifying musical quality

f(s) =
∑
i

ai.subscoreHi (s)︸ ︷︷ ︸
horizontal aspect

+
∑
j

bj .subscoreVj (s)︸ ︷︷ ︸
vertical aspect

(1)

Quantifying musical quality

I Weights ai and bj
I Specified at input

I Emphasize subscore from start

I Adaptive weights mechanism
I Increase weight of subscore with highest value
I Keeps the search in the right direction

Variable Neigborhood Search

I Local search with 3 neighborhoods
I Selection

I Steepest descent
I Based on adaptive score fa(s)

Ni Name Description

Nsw Swap Swap two notes
Nc1 Change1 Change one note
Nc2 Change2 Change two notes

Variable Neigborhood Search

I Excluded framents
I Tabu list
I Infeasible

I Perturbation
I Change r% of the notes randomly

I Adaptive weights mechanism

I Update best solution sbest, based on original score f(sbest)

LS Swap NH

LS Change1 NH

LS Change2 NH

Current s
<

s at A?

Change r% of
notes randomly

Yes
No

Update s best

Generate random s

A

Max iters
reached?

Update
adaptive weights

Iters ++

No

Exit

Exit

Optimum
found?

yes

Yes

Experiments & Results

I Full factorial experiment, n=2304

Parameter Values Nr. of levels
Nsw - Swap on with ttsw=0, ttsw= 1

16 , ttsw= 1
8 , off 4

Nc1 - Change1 on with ttc1=0, ttc1= 1
16 , ttc1= 1

8 , off 4
Nc2 - Change2 on with ttc2=0, ttc2= 1

16 , ttc2= 1
8 , off 4

Random move 1
4 changed, 1

8 changed, off 3
Adaptive weights on, off 2
Max. iterations 5, 20, 50 3
Length of music 16, 32 measures 2

Experiments & Results
I Multi-Way ANOVA model with interaction effects, using R
I R2 = 0.9642

Parameter Df Sum Sq Mean Sq F value Prob (> F)

Nc1 1 155.73 155.73 4857.6450 < 2.2e−16

Nc2 1 238.40 238.40 7436.5417 < 2.2e−16

Nsw 1 69.13 69.13 2156.2797 < 2.2e−16

randsize 2 38.09 19.05 594.1391 < 2.2e−16

maxiters 2 9.30 4.65 145.0207 < 2.2e−16

ttc1 2 0.05 0.02 0.7588 0.468333
ttc2 2 0.15 0.08 2.3595 0.094707
ttsw 2 0.08 0.04 1.3150 0.268681
adj. weights 1 0.30 0.30 9.3497 0.002257

Experiments & Results

I Mean plot for the size of the random jump

0 10 20
0.6

0.8

1

1.2

Random size (in %)

S
co

re

0 10 20

100

200

T
im

e
(s

)

Optimal parameter settings

Parameter Value

Nsw - Swap on with ttsw=0
Nc1 - Change1 on with ttc1=1

4
Nc2 - Change2 on with ttc2=1

2
Random move 1

8 changed
Adaptive weights on
Max. number of iterations 50

Implementation

I C++ → VNS

I JavaScript using the QtScript engine → MuseScore plugin
I Input:

I Key (i.e., G# minor)
I Weights for each subscores
I VNS parameters

I Result: MusicXML

Implementation

Results
I Example of a generated fragment with score 0.556776.


44
44














    

  



 


      


 






       

 






  

12

Conclusion

The fifth species counterpoint rules have been quantified and an
efficient algorithm has been implemented to compose this style of
music

Future research:
I More complex music:

I Different styles
I More parts

I Analyse DB of existing music and extract composer
characteristics

I Compare the VNS to other algorithms, e.g. genetic algorithm

Composing Counterpoint Music With
Variable Neighborhood Search

D. Herremans & K. Sörensen

ORBEL26, February 2-3, 2012

University of Antwerp

Operations Research Group

ANT/OR

	Computer aided composing (CAC)
	Variable Neigborhood Search
	Experiments & Results
	Implementation
	Conclusion

