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ABSTRACT

Many real life situations result from decisions taken by a very large number of decision makers. Among them, we
may cite road traffic congestion, crowding during shopping, equity market behaviour, distribution of holiday
destinations, etc. Furthermore, these decisions often depend on the optimisation of several conflicting criteria. In this
paper, we introduce a new multicriteria tool based on Markov chains to model and manage these macroscopic
phenomena. Finally, the road traffic congestion problem will be considered to illustrate the applicability of our
approach. Copyright # 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the most recent developments in the field of
decision aid as a subdomain of operational
research is that of group decision making. The
modelling and management of decisions taken by
several decision makers has been, for the last
decade, the center of interest of a still growing field
of research. In combination with tools developed
within the multicriteria decision aid community,
new approaches were born and have led to both
interesting theoretical and practical results (see e.g.
Macharis et al., 1998).

In this paper, the authors consider a problem
beyond usual multicriteria group decision making
in the sense that the number of decision makers
involved (e.g. 100 000 decision makers) is such that
it is impossible to model or even to observe each
individual one. Such situations are frequent in
many real life situations. Let us cite for instance
road traffic congestion, the occurrence of queues
during shopping, equity market behaviour, dis-
tribution of holiday, etc. In these extreme condi-
tions, classical group decision tools are technically
not applicable.

Therefore, the authors have developed the idea
of statistical multicriteria decision modelling
(SMDM), in which the objective is not to find a
unique or a set of good solutions for a given
problem. It is rather to model decisions taken by a
very large number of decision makers, i.e. to
obtain for each potential action a theoretical
frequency of related decisions for the considered
group. This tool will be of great help to model and
manage situations such as those mentioned above.
Furthermore, it is worth commenting that our
approach is neither prescriptive, nor supportive as
it is the case for group decision support systems,
but purely descriptive.

In the next section we present a possible
conceptual framework to tackle the problem.
Intuitively, each individual will make a decision
on the basis of his own preferences. From a global
point of view, all those elementary decisions give
rise to so called decision frequencies. This phase
will be modelled by means of Markov chains. Our
approach is based on the assumption that the
individual preferences of a large group of decision
makers can be modelled through a unique, though
sufficiently general, preference matrix.

The Markov chain technique is extensively used
in marketing management. Most analyses concen-
trate on predicting future consumer choices in
purchasing products from different competitors.
The purpose is to forecast the magnitude and
speed of change in future market shares given the
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present market shares (Kotler, 1984). Other
applications deal with interactive marketing to
establish the budget of marketing expenditures, see
for example Pfeifer and Carraway (2000). In all
these applications the stochastic transition matrix
is directly available from market surveys. In the
present paper we establish an approach to derive
the relevant transition matrix by using multi-
criteria modelling techniques. To our knowledge,
this has never be attempted before. We feel that it
could also be a benefit to marketing management.
A review of the use of the Markov chain
techniques, including in marketing management,
is given in White (1993).

The illustrative example treated in the third
section is that of road traffic congestion generated
by the decisions of car commuters. The decision
involved here is the determination of the departure
time, which is based on a (unconsciously made by
road users) multicriteria analysis involving criteria
such as ‘time spent on road’, ‘wake up too early’,
‘penalty for late arrival on job’, etc. After a short
introduction, the structure of the simulation model
is described. This section terminates with some
simulation results including different policy mea-
sures and the differentiation of two large social
groups (labourers and office workers) on which
policies have different impacts.

The objective of the paper is to derive an
original methodology, and to show its practica-
bility with a simplified notional example. Though
the latter is not coming from real practice, it is
close enough to the concerns of contemporaneous
decision-makers. However, it could be expanded
later to make it more realistic.

We end this paper with some conclusions,
remarks and open questions.

2. THE MODEL

Let us consider a multicriteria decision problem
characterized by a set of p potential actions,
A ¼ a1; a2; :::; ap

� �
; and a set of q criteria, G ¼

g1; g2; :::; gq
� �

: Let D ¼ d1; d2; :::; drf g be the set of
decision makers facing the choice problem based
on the previous framework. We assume that the
cardinality of D is such that it is too difficult, or
even impossible to represent or observe every
individual decision.

Due to the multicriteria nature of the problem,
each decision maker chooses the action that fits
best his/her own preferences. Being heterogeneous,

two decision makers may choose two different
actions. Hence, from a macroscopic point of view,
we will not observe a unique decision but rather
decision frequencies fr1; fr2; :::; frp

� �
; where fri is

the observed frequency related to the choice of
action ai: The aim of the proposed method is to
model the decision process that leads to these
frequencies. This will for instance allow us to study
impacts, on the macroscopic behaviour of decision
makers, when adding new potential actions or
modifying existing ones.

The main underlying assumption of the pro-
posed method is that the decisions taken by the
group of decision makers D can be modelled
through a discrete stochastic process on the set A,
denoted Xn; n50f g: The intuition behind this
assumption is that for each decision maker
choosing an action is a dynamic process. Suppose
that ak is the current best action for decision
maker di. Before definitively choosing ak as the
best one, di will compare it to all other actions.
Based on preferences between ak and any other
action, di will decide to reconsider his choice or
not. Each time a new action is considered the
comparison process restarts. Our model assumes
that:

P Xnþ1 ¼ al jXn ¼ akð Þ ¼ pkl ¼ F plk;pklð Þ ð1Þ

with pkl the valued preference of ak on al and F a
normalized distribution function, to be defined. In
other words, we impose that the probability to
choose a new action al instead of the current one
ak only depends on the preferences between these
two potential actions. If m decision makers are
considering that ak is the current best action, only
m � F plk;pklð Þ will reconsider their status in favor
of al. The selection process can therefore be
represented by a Markov chain. To simplify the
model, we have supposed that each decision maker
is using the same model, i.e. the same stochastic
process and the same preference matrix.

Assuming that this Markov chain is well
adapted to describe the decision process of all
the decision makers di 2 D; its stationary dis-
tribution p1; :::; pp

� �
will provide the frequencies

fr1; :::; frp
� �

:
As a matter of fact, the construction of the

preference matrix comparing every pair of actions
P ¼ pij

� �
04pij þ pji41
� �

is a critical step of our
approach. This matrix can be obtained, for
instance, by applying the PROMETHEE (Brans
and Mareschal, 1994) formalism. P being unique,
it is supposed to be sufficiently general to represent
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all the decision makers preferences. Therefore, its
computation must take into account the different
opinions present in the group. Weights and
preference thresholds, if used, have to be carefully
chosen. This part of the model is of course quite
sensitive and must be adjusted and validated
through the obtained results.

Until now, we have no theoretical constraint to
define the function F , but as a first sensible
attempt we propose to define it in the following
manner:

pkl ¼ F plk;pklð Þ ¼

plk
p� 1

if kal

1�
P

kaj pkj otherwise

8<
: ð2Þ

This transformation implies that the probability to
choose an action l instead of the current action k is
directly proportional to the preference of action l
on action k. In addition, this probability is
weighted by 1=ðp� 1Þ which can be interpreted
as the uniformly distributed probability to choose
one action among the ðp� 1Þ remaining alterna-
tives.

It is obvious to notice that many other
transformations F can be considered which is a
direction for ongoing and future research.

A desirable property for F is that by applying it
to pij

� �
the obtained Markov chain is irreducible

and ergodic. This constitutes a sufficient condition
to obtain an unique stationary distribution (Ross,
1997).

Let us remark that Glineur (1998) has already
considered the application of Markov chains to
multicriteria problems. However, his work is dedi-
cated to the choice of a single alternative among
several. In multicriteria terms, such approach is
categorized under the so-called ‘choice proble-
matic’. Unlike the other approaches within the
field of MCDA, our intention is rather to perform
a descriptive analysis of a decision problem
involving a large number of decision makers, i.e.
to describe the decision frequencies over the set of
all alternatives and to study how they can be
affected by different factors.

3. AN EXAMPLE: THE ROAD TRAFFIC
CONGESTION PROBLEM

Let us note that the example, presented here
below, has an illustrative purpose. Our goal is to
demonstrate the applicability of the framework

rather than giving a complete detailed analysis of
the road traffic congestion problem.

3.1. Introduction
Nowadays one of the major challenges for policy
makers in the Western countries consists in
handling the traffic congestion problem around
the cities. Several models have been developed to
study potential policy measures in order to
influence the density of car commuters on the
roads.

An early approach in which the car commuters’
behaviour was explicitly taken into account was
presented by Small (1992). In this study the car
commuter is supposed to make a trade-off between
different cost-functions (criteria) representing the
time to be too early or too late on his/her job and
the time spent on road when driving from home to
office. Each commuter is then supposed to
determine his personal strategy. Knowing the
private marginal cost as a function of time
(Mirabel, 1997), the model is reduced to an
optimization problem in which the distribution
of arrival times has to be optimised, taking into
account several restrictions. By doing so the model
optimises the collective utility and finally gives rise
to a distribution of arrival times (see Figure 1).

In order to internalize the externalities due to
traffic congestion a toll was introduced during the
peak hours. A second policy option might be to

Figure 1. Results of the simulation for the distribution
of arrival times using optimal control theory. The
highest arrival distribution shows the ‘no policy case’
(}}). The three other distributions progressively
flatten as the policies are applied in the following order:
‘toll alone’ (} } }), ‘flexible time alone’ (oooo), ‘toll
and flexible time together’(xxxx) (from Kunsch et al.,
2001).
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introduce flexible working hours. Applying the
latter, people may arrive (and leave) earlier or later
at their job, inducing a widening of the distribu-
tion of departure times and a decrease in
amplitude and consequently a decrease of the
density of people on the road.

Using optimal control theory, the following
results were obtained (see Figure 1) (Small, op.
cit.). As shown in this figure the introduction of a
toll will spread out considerably the peak-hour
time if combined with flexible working hours.

Another more extended and dynamic approach
was presented by two of the authors: Kunsch et al.
(2001) and Springael et al. (2002), taking into
account several criticisms on the initial economic
model such as

1. the use of costs in order to determine the
strategy while most criteria are defined on a
qualitative scale;

2. the absence of the dynamic aspects in the
determination of the several strategies (learning
effects, etc.).

We invite the interested reader to consult the
reference Springael et al. (op. cit.) for a detailed
description of the extended model. Though we
would like to use this example in order to illustrate
the theoretical formalism of the previous section
and the applicability of statistical multicriteria
decision modelling (SMDM).

3.2. Assumptions of the simulation model
In this example we start from the same assump-
tions as in previous models. We consider a single
road on which 105 car commuters must drive from
their home (a single place) to the central business
district (another single place), between 6 and 12
a.m. Hence, these commuters have to make a
decision on their departure time (i.e. actions with a
gap of 5min, resulting in 72 possible departure
times, written in the notation of Section 2 as A ¼
0; 5; 10; :::; 360f gÞ taking into account several
criteria. The three criteria that will be used at a
first stage are

* The time spent on the road.
* The penalty to arrive too late on job.
* The penalty to wake up too early in the

morning.

The time spent on the road by the different com-
muters is deterministically computed following

the formula used in Small’s study (op. cit.):

Troad tð Þ ¼ Tmin þ Tcong
A tð Þ
R

� �g
ð3Þ

where Troad tð Þ is the time spent on the road to
reach the city when leaving home at time t. Tmin is
the minimum time needed to drive on the road.
Tcong is a congestion time. A(t) is the total number
of commuters at each time t. R is the road
capacity, and g is an elasticity factor. In Mirabel’s
study (1997), we have g=1.4.

Later on additional criteria can be added in the
simulation such as the use of a toll. The use of
flexible working hours will be influenced by acting
on the parameters of the criteria ‘penalty to arrive
late on job’.

In what follows we have chosen to evaluate
actions directly in terms of preference degrees.
The preference functions used for the three
aforementioned criteria are respectively shown in
Figures 2–4.

The indifference and strict preference para-
meters of the previous preference functions depend
on the profile of the modelled group of commu-
ters. Acting on these parameters will allow us to
model different social behaviors. To give the

Figure 2. Preference function for the criterion ‘Time
spent on road’.

Figure 3. Preference function for the criterion ‘Wake up
too early’.
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reader an idea of their value, some parameters are
listed below for a ‘classical’ commuter:

* Tor min=15’, Tor max=75’.
* Wake up min=60’, Wake up max=210’.
* Too late min=5’, Too late max=60’.

Let us note that the values of the ‘wake up’
parameters are taken with respect to an initial time
corresponding to 6 a.m. while those of the ‘too
late’ criterion are taken with respect to the
expected arrival time corresponding to 9 a.m.

Furthermore it must be remarked that the
criteria ‘Wake up too early’ and ‘Time too late
on job’ are strongly dependent. Therefore we
combine both criteria into a single multiplicative
one, with a preference function as shown in
Figure 5 with the same parameters as for the
uncombined preference functions.

In the next simulations, the relative weights of
criteria time spent on the road and Time too early/
late on job are typically around 10/90%.

It should be noted that the parameters used in
the preference model were based on personal
feelings and experiences of some of the authors
(themselves being commuters), from common
sense or from enquiries with colleagues or friends.
We still want to emphasize, however, that the
objective of presenting this example, is to illustrate
the theoretical framework and not to perform a
deep analysis of the well-known congestion
problem.

3.3. Structure of the simulation model
One of the major drawbacks of our first dynamical
multicriteria approach is that an unique decision
model is used to represent the behaviors of all the
commuters. By doing so, the commuters are
supposed to use the same parameters during their
decision process. This keeps us from representing,

for instance, different, social groups. In order to
avoid this, we changed the structure of our
simulation setup considerably, by using different
agents. Each agent has its own decision parameters
and is representing several commuters. Depending
on the number of agents a higher degree of
heterogeneity can be introduced into the model,
which might be interesting to study the responses
of different types of car commuters on different
policy measures.

The preference matrix is computed as follows:

pij ¼
Xn
k¼1

ok max Pk ið Þ � Pk jð Þ; 0f g ð4Þ

where ok stands for the weight of the kth criterion
and PkðiÞ is for the preference degree of alternative
ai on criterion k.

This matrix is then transformed into a prob-
ability distribution for the departure times accord-
ing to Equation (2). Knowing the number of car
commuters an agent is representing, the distribu-
tion of departures is calculated. This procedure is
performed for each agent, which is the first step in
our simulation. As a second step, when the
departure times are all known, they are commu-
nicated to the environment (‘‘the road’’) in which
the agents are positioned. With this information
the road ‘‘calculates’’ by means of formula (3) the
arrival times of the different car commuters,
mixing all the car commuters of the different
agents, which is the third step in our simulation
procedure. The final step 4 consists in commu-
nicating the arrival times back to the agents, so
that they can use this information for the next
iteration (day) and eventually adapt their strategy.
The Figure 6 here below illustrates these four
phases. Convergence is expected towards a
steady state distribution after a sufficient numbers
of days.

Figure 4. Preference function for the criterion ‘Time too
late on job’. Figure 5. Preference function for the combined criterion

‘Time too early/late on job’.
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To conclude, the general structure of the
simulation model is a discrete event simulation
where each new step (composed by four phases)
represents a new day. The result of each step (after
phase 4) is used as input for the next step. Agents
are using their historical experience to determine
the commuters’ departure times. Let us remark
that when the simulation starts, no historical
information is available to the agents. Therefore,
we used as initial distribution for ‘time spent on
road’ a randomly generated triangular distribu-
tion, centred on 8 a.m. Experiments have shown
that this initial assumption has no important
impact on the final decision frequencies.

3.4. Results
In this section, we present some results we have
obtained with the model described in the previous
sections. The aim of these simulations was to
obtain some empirical validation of our model.
Most of simulations have converged between 80
and 150 days depending on the considered
scenario.

3.4.1. Stability of the proposed model. A first
simulation was run in order to test the stability of
our approach. As already mentioned, our model
should represent the decisions of a large number of
decision makers (in this case 105 commuters). By
doing so, we compute a unique preference matrix
and exploit it in a stochastic way. This preference
matrix is, of course, defined by means of para-
meters: preference thresholds, criteria weights,...
A legitimate question is to wonder whether
these parameters have an important impact
on the results or not. More precisely, are the
decision frequencies obtained through this
unique preference matrix (reflecting the homoge-
neity of the group), similar to those obtained by
heterogeneous agents, of which the preference
matrix is generated through randomisation of the
parameters?

Figure 7 shows the density of departure times
obtained by means of 1 (macro), 50, 250, 500 and
1000 heterogenenous agents. As shown the results
appear to be rather stable. For each agent,
parameters have been randomly perturbed using
a uniform distribution. Table I summarizes their
parameters.

3.4.2. Four policies. To compare our results
with those of previous studies (Small, 1992;
Springael et al., 2002), we have applied the four
following scenarios: no policy, time flexibility, toll
and finally the combination of a toll and time
flexibility. Time flexibility has been induced by
increasing the ‘Too late min’ and ‘Too late max’
parameters: (15’, 120’) instead of (5’, 60’). In this
model, we have considered a toll as a fixed
payment in a certain time period. This criterion
has been modelled by means of a binary preference
function with a toll period from 8 a.m. till 9 a.m.
The weight associated to the toll criteria is on
average 30% of the total weight. The relative
weights between the criteria ‘time spent on the
road’ and ‘time too early/too late’ are held. The
results of the simulations are presented in Figure 8
for a single homogeneous agent.

As expected, both the time flexibility and the toll
have an impact on the departure distribution. The
effect of the time flexibility policy is a right shift
and a widening of the departure times. Applying a
fixed toll on a specific period will lead to a
congestion reduction for this period but also
congestion problems before or after the corre-
sponding time interval. The resulting bi-modal
distribution is typical for such policy. In case of

Figure 6. Structure of the simulation step. Phase
1}every agent computes its departure times. Phase
2}agents send their commuters on the road according
to their departure decisions. Phase 3}at the end of the
day the total number of commuters at each moment of
the day and the total time spent on the road is
computed. Phase 4}the total time spent on the road is
communicated to the different agents. This information
will complete the historical experience of each agent and
will therefore permit them to improve their departure
strategy for the next step.
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keeping the previous assumptions for the combi-
nation of the two policies, it has to be remarked
that the congestion after 9 a.m. is much more
important than the one before 8 a.m.

3.4.3. Labourers versus office workers. It is well
known that every social group does not react in
the same manner to time flexibility. Due to the
nature of their job, the labourers are less sensitive
to the time flexibility than the office workers. The
Figure 9 shows the impact of time flexibility on
the congestion by considering its influence only
on office workers. The labourers/office workers
repartition has been assumed to be 30/70%.

Labourers are supposed to arrive at work
around 8 a.m. while office workers arrive later,
i.e. around 9 a.m., and due to their job nature
they are supposed to be less flexible: the
values Wake up min=0’, Wake up max=120’,
Too late min=0’ and Too late max=30’ are to
be compared with the assumptions given in 3.2.

Considering two heterogeneous social groups
leads to macroscopic results that are slightly
different from those observed previously. On the
other hand, applying time flexibility induces a bi-
modal curve resulting from the fact that labourers
are less sensitive to this policy.

4. CONCLUSIONS AND FUTURE
RESEARCH

In this paper, new concepts have been introduced
for multicriteria modelling. As mentioned before,
we focus here on decision problems where the
number of decision makers involved is particularly
large. Therefore, the idea of statistical multicriteria
decision modelling (SMDM) has been introduced
and illustrated through the road traffic congestion
problem.

The presented approach is based on the
assumption that multicriteria decisions taken by

Figure 7. Simulations based on heterogeneous agents. There are 72 possible decisions on the departure time (every
5’ starting at 6 a.m. till 12 a.m.).

Table I. Parameters used in the simulations for hetero-
geneous agents

Parameter Target value Min Max

Weight tor 0.1 0 0.2

Weight too late/early 0.9 0.8 1

Tor min 15’ fixed fixed

Tor max 75’ 30’ 120’

Wake up min 60’ 0’ 120’

Wake up max 210’ 150’ 270’

Too late min 5’ 0 10’

Too late max 60’ 30’ 90’
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Figure 8. Application of four scenarios (no policy, time flexibility measures, application of a toll and combination of
a toll and time flexibility measures) for a single homogeneous agent.

Figure 9. Labourers versus office workers. The curves aggregate the departure times for both labourers and office
workers for two scenarios: with or without time flexibility.
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a large group of decision makers can be modelled
by means of a sufficiently general preference
matrix. To model each individual decision,
this theoretical preference matrix is exploited
by means of Markov chains. Let us note that
this unique preference matrix can be computed
according to different formalisms, the only
restriction imposed on it is that pij þ pji41
and pij50;8i; j 2 A Otherwise our model is
not linked to any particular multicriteria metho-
dology.

If first results seems encouraging, different
questions remain open. Among them, the trans-
formation of preferences into probabilities is
certainly the most crucial one. A related question
is about the stationary property of the induced
Markov chain. Finally, applying this approach to
other real life situations will permit to further test
its coherence.

From the multicriteria point of view, some
questions raised in Springael et al. (2002) still
deserve some attention:

* Should the MCDA-agent perform a full pair-
wise comparison of all actions, or, on the
contrary, a partial comparison of subsets of
possible actions?

* How to represent the preference information
within the ‘homogeneous’ group of decision
makers?

With respect to this last question we have tried
to give an answer in the way the simulation was
conceived. For each agent, representing an homo-
geneous group of decision makers, different pre-
ference degrees and weights were stochastically
selected. Nevertheless the simulation results may
lead to the conclusion that this effect on the final
distribution is a minor one.
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