

The optimization of water distribution networks: a critical review

A. De Corte K. Sörensen University of Antwerp – ANT/OR EU/ME 2012, May 10-11, 2012

Table of contents

Water distribution networks

Optimization of water distribution networks Problem analysis Problem definition Objective function

State of the art Overview Points of improvement

Network generation

Water distribution networks

<ロト < 母 ト < 臣 ト < 臣 ト 三 3/29

Water distribution network (WDN)

A network that consists of different components (pipes, pumps, valves, reservoirs,...) that transport drinking water from one or more resource nodes to multiple demand nodes (domestic, industrial and commercial customers). The water must be supplied in sufficient quantities and at an adequate pressure.

Three different levels:

Table: Optimization levels

decision level	phase	decision variables	
strategic	layout	system connectivity, topology	
strategic	design	pipe diameter, pipe roughness,	
operational	operational	pump efficiency, valve control,	

Three different levels:

Table: Optimization levels

decision level	phase	decision variables		
strategic	layout	system connectivity, topology		
strategic	design	pipe diameter, pipe roughness,		
operational	operational	pump efficiency, valve control,		

Finding the optimal pipe-configuration out of a set of discrete pipe types in terms of investment cost, with respect to hydraulic principles and conservation laws.

- e.g.: three possible pipe types:
 - 1 (diameter=80mm,roughness=130)
 - 2 (diameter=80mm,roughness=100)
 - ▶ 3 (diameter=150mm, roughness=130)

Pipe configurations

Pipe configurations

<ロト < 団 ト < 臣 ト < 臣 ト 三 8/29

Finding the optimal pipe-configuration out of a set of discrete pipe types in terms of investment cost, with respect to hydraulic principles and conservation laws.

- \rightarrow discrete decision variable
- \rightarrow non-linear objective function
- \rightarrow (non-) linear constraint functions

 \Rightarrow combinatorial optimization problem

<ロト < 団 ト < 臣 ト < 臣 ト 三 8/29

Finding the optimal pipe-configuration out of a set of discrete pipe types in terms of investment cost, with respect to hydraulic principles and conservation laws.

- \rightarrow discrete decision variable
- \rightarrow non-linear objective function
- \rightarrow (non-) linear constraint functions

 \Rightarrow combinatorial optimization problem

<ロト < 団 ト < 臣 ト < 臣 ト 三 8/29

Finding the optimal pipe-configuration out of a set of discrete pipe types in terms of investment cost, with respect to hydraulic principles and conservation laws.

- \rightarrow discrete decision variable
- \rightarrow non-linear objective function
- \rightarrow (non-) linear constraint functions

 \Rightarrow combinatorial optimization problem

<ロト < 団 ト < 臣 ト < 臣 ト 三 8/29

Finding the optimal pipe-configuration out of a set of discrete pipe types in terms of investment cost, with respect to hydraulic principles and conservation laws.

- \rightarrow discrete decision variable
- \rightarrow non-linear objective function
- \rightarrow (non-) linear constraint functions

 \Rightarrow combinatorial optimization problem

An optimally designed WDN:

- has a minimal design cost
- satisfies hydraulic laws
- satisfies mass conservation laws
- satisfies energy conservation laws
- satisfies customer requirements

Objective function

$$\mathsf{Minimize} \ TC = \sum_{p \in P} (D_p, L_p)$$

subject to:

$$\begin{split} \forall n \in N : & \sum_{i \in N} Q_{in} - \sum_{j \in N} Q_{nj} = D_n - S_n \quad (\text{mass conservation law}) \\ \forall l \in L : & \sum_{p \in l} \Delta H_p = 0 \quad (\text{energy conservation law}) \\ \forall n \in N : & H_n \geq H_n^{min} \quad (\text{minimal head requirement}) \end{split}$$

Mass conservation law

$$orall n \in N$$
 : $\sum_{i \in N} Q_{in} - \sum_{j \in N} Q_{nj} = D_n - S_n$
for node 2 : $Q_{12} - (Q_{24} + Q_{23}) = D_2$

<ロ> < 母> < 臣> < 臣> < 臣 > 臣 12/29

Objective function

<ロト<回ト<差ト<差ト<差ト 12/29

$$\mathsf{Minimize} \ TC = \sum_{p \in P} (D_p, L_p)$$

subject to:

$$\begin{split} \forall n \in N : & \sum_{i \in N} Q_{in} - \sum_{j \in N} Q_{nj} = D_n - S_n \quad (\text{mass conservation law}) \\ \forall l \in L : & \sum_{p \in l} \Delta H_p = 0 \quad (\text{energy conservation law}) \\ \forall n \in N : & H_n \geq H_n^{min} \quad (\text{minimal head requirement}) \end{split}$$

<ロト < 回 > < 直 > < 亘 > 三 13/26

Objective function

<ロト<部ト<差ト<差ト 14/29

$$\mathsf{Minimize} \ TC = \sum_{p \in P} (D_p, L_p)$$

subject to:

$$\begin{array}{ll} \forall n \in {\sf N}: & \sum_{i \in {\sf N}} Q_{in} - \sum_{j \in {\sf N}} Q_{nj} = D_n - S_n \quad ({\rm mass \ conservation \ law}) \\ \\ \forall l \in {\sf L}: & \sum_{p \in {\sf l}} \Delta H_p = 0 \qquad ({\rm energy \ conservation \ law}) \\ \\ \forall n \in {\sf N}: & H_n \geq H_n^{min} \qquad ({\rm minimal \ head \ requirement}) \end{array}$$

<ロト < 課 > < 差 > < 差 > 差 15/36

Benchmark networks

<ロト < 団 ト < 臣 ト < 臣 ト 三 18/30 18/30

Two loop network (Alperovits & Shamir, 1977)

- 6 demand nodes
- 1 reservoir node
- ► 8 pipes
- 2 loops

Benchmark networks

New York City Tunnels (Schaake & Lai, 1969)

- 20 demand nodes
- 1 reservoir node

<ロト < 団 ト < 臣 ト < 臣 ト 三 19/36

- ▶ 21 pipes
- ► 2 loops

Realistic network

</

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Comparison of networks

<ロト<部ト<差ト<差ト<差ト 23/29

Table: Dimensions of benchmark and realistic networks

	Two loop	New York	Hanoi	realistic network
junctions	7	20	32	j
loops	2	2	3	(6,166 + 1 - j)
pipes	8	21	34	6,166
cost function	1	1	1	1
available pipes	14	16	6	90
equations	18	44	70	12,334
solution space	14^{8} = 1.476 × 10 ⁹	$\begin{array}{l} 16^{21} \\ = 0.193 \times 10^{26} \end{array}$	6^{34} = 2.865 × 10 ²⁶	$\begin{array}{l} 90^{6,166} \\ = 5.301 \!\times\! 10^{10,826} \end{array}$

Overview of results: NY City Tunnels problem by Schaake and Lai, 1969

Method	Authors	hydraulic <i>w</i> coefficient	F/IF under EPANET2?	Total Cost (in mUSD)
Tabu Search 1	Cunha and Ribeiro, 2004	na	IF	37.13
Tabu Search 2	Cunha and Ribeiro, 2004	na	IF	37.13
Genetic Algorithm	Savic and Walters, 1997	10.5088	IF	37.13
Genetic Algorithm	Lippai et al., 1999	10.5088	IF	38.13
Simulated Annealing 1	Cunha and Sousa, 2001	10.5088	IF	37.10
Scatter Search	Lin et al., 2007	10.5088	IF	36.68
Immune Algorithm	Chu et al., 2008	10.5088	IF	37.13
modified Immune Algorithm	Chu et al., 2008	10.5088	IF	37.13
Ant Colony Optimization	Maier et al., 2003	10.6668	F	38.64
Shuffled Frog Leaping Algorithm	Eusuff and Lansey, 2003	10.6688	F	38.80
Ant System	Zecchin et al., 2005	10.6688	F	38.64
Max-Min Ant System	Zecchin et al., 2006	10.6688	F	38.64
Harmony Search	Geem, 2006	10.6688	F	38.64
Particle Swarm Harmony Search	Geem, 2009	10.6688	F	38.64
Differential Evolution	Vasan2010	10.6668	F	38.64
Scatter Search	Lin et al., 2007	10.675	F	38.64
Simulated Annealing 2	Cunha and Sousa, 2001	10.6792	IF	38.80
Genetic Algorithm	Savic and Walters, 1997	10.9031	F	40.42
Simulated Annealing 1	Cunha and Sousa, 2001	10.9031	IF	40.40
Scatter Search	Lin et al., 2007	10.9031	F	40.42
Immune Algorithm	Chu et al., 2008	10.9031	F	40.42
modified Immune Algorithm	Chu et al., 2008	10.9031	F	40.42

Our simple algorithm on NYCT

Sort pipes according to decreasing pipe length

Step 1. Set diameters on max

Set all pipe diameters on maximum

- \rightarrow maximal cost
- \rightarrow hydraulic feasible

Step 2. Two local search mechanisms

- 1. Iteratively decrease
- 2. Iteratively increase + decrease

Step 3. Perturbation

Set random selected pipes on maximum

 \rightarrow also led to reported minimal cost 38.64 mUSD (EPANET 2)

<ロト < 団 ト < 臣 ト < 臣 ト 三 25/29

<ロト < 団 ト < 臣 ト < 臣 ト 三 2000 26/29

Shortcomings earlier developed methods:

- Methods not based on established principles of metaheuristic design
- Heuristics are case-specific
- Methods are not adequately tested

Therefore, heuristics are not applicable on real networks

Need for:

- Correctly designed metaheuristics that can be used in real-life situations
- High-quality networks on which developed methods can be adequately and profoundly tested

Network generation

<ロト < 団 ト < 臣 ト < 臣 ト 三 27/36

Develop a method to generate realistic WDN

Characteristics:

- ► algorithmic generation → networks of different sizes and characteristics (~ realistic networks)
- free and online available
- EPANET-format

Objective:

- extensive library should become new benchmark
- stimulate development of more effective optimization methods

Thank you for your attention! Any questions?

<ロト < 団 ト < 臣 ト < 臣 ト 三 28/36

Slides available at http://webhost.ua.ac.be/antor/ Contact via annelies.decorte@ua.ac.be