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a b s t r a c t

We consider a routing problem for ambulances in a disaster response scenario, in which a large number
of injured people require medical aid at the same time. The ambulances are used to carry medical
personnel and patients. We distinguish two groups of patients: slightly injured people who can be
assisted directly in the field, and seriously injured people who have to be brought to hospitals. Since
ambulances represent a scarce resource in disaster situations, their efficient usage is of the utmost
importance. Two mathematical formulations are proposed to obtain route plans that minimize the latest
service completion time among the people waiting for help. Since disaster response calls for high-quality
solutions within seconds, we also propose a large neighborhood search metaheuristic. This solution
approach can be applied at high frequency to cope with the dynamics and uncertainties in a disaster
situation. Our experiments show that the metaheuristic produces high quality solutions for a large
number of test instances within very short response time. Hence, it fulfills the criteria for applicability in
a disaster situation. Within the experiments, we also analyzed the effect of various structural parameters
of a problem, like the number of ambulances, hospitals, and the type of patients, on both running time of
the heuristic and quality of the solutions. This information can additionally be used to determine the
required fleet size and hospital capacities in a disaster situation.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recent examples such as Hurricane Katrina in 2005, the Indian
Ocean tsunami in 2004, or any of the recent armed conflicts around
the globe demonstrate that disasters can have a devastating impact
on a society. Regardless of whether their cause is natural (e.g.,
earthquakes, floods, hurricanes, wildfires) or man-made (e.g., terrorist
attacks, war situations), disasters can cause large-scale loss of life as
well as damage to a society's infrastructure, housing, and industrial
complex. It has been widely recognized (see e.g., [3,19]) that the
severity of a disaster can be, to a large extent, influenced by the
efficacy of the logistics operations during the response phase.
Although the disaster itself can certainly cause a lot of casualties, a
large fraction of the victims usually perish because of a lack of
medical aid in the immediate aftermath of a disaster. Clearly, the
post-disaster situation results in the response actions having to be
executed under extremely challenging conditions: limited availability
of resources (transportation, supplies, manpower, hospital capacity),

damaged transportation and communication infrastructure, as well as
uncertain information regarding the number and locations of people
in need of medical assistance, see e.g., Najafi et al. [27,28] and Yi et al.
[43]. Despite these challenges, it is essential that the logistics relief
operations are initiated quickly and well planned to be most effective.
Hence, there is a strong need for decision support tools that generate
solutions to the underlying optimization problems in a few seconds
or less [3]. However, research on transportation problems and vehicle
fleet management for disaster response operations is emerging only
recently, see de la Torre et al. [41] and Pedraza-Martinez and van
Wassenhove [33]. With this paper, we propose a decision support
approach for the routing of ambulances in response to a disaster.

The central task of managing ambulances in a disaster response
situation is to provide first aid to slightly injured people and to
bring seriously injured people to operating hospitals. Managing the
operations of ambulances in the immediate aftermath of a disaster
is massively complicated by the dynamics and uncertainty with
which the planning conditions (especially the relevant informa-
tion) change over the course of time. The information required to
support the planning of ambulances includes the number and
location of people calling for help, the availability of ambulances,
the capacity of the nearby hospitals, as well as the accessibility of
incident sites due to the damaged infrastructure and the current
traffic situation, see Jotshi et al. [22]. Another issue is that, in
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contrast to the daily operations in the public health care sector, the
number of requests for help in a disaster situation strongly exceed
the capacity of the available ambulance fleet. Hence, it is of utmost
importance to use the ambulances efficiently in such a way that
they provide as much medical aid as possible.

The response process that is executed by the responsible
organizations in the aftermath of a disaster has to be designed in
such a way that it is able to cope with the challenges of a dynamic
planning situation for the scarce ambulance resource. The routing
of ambulances in such a situation can be treated as a static or a
dynamic routing problem. In the static case, a set of emergencies
requests is collected first and, then, the routing problem is solved
for this set of requests. In the dynamic case, the routes of
ambulances are updated whenever new help requests arrive,
which can reduce the response time. However, this approach
requires that communication with the ambulances is possible at
all time, which might not be the case in a disaster situation and,
furthermore, the rescue teams may perceive this to be disturbing
under stressful circumstances. Therefore, in this paper, we consider
a three-step response process that aims at solving a static ambu-
lance routing problem, see Fig. 1. The process is executed by a
central dispatching unit, which collects requests and manages
ambulance operations repeatedly until no further emergency
requests are received. The first step is to answer incoming
emergency calls and to collect relevant information like the
location and the condition of the people being in need of help.
The dispatcher collects several requests that are then classified
according to their severity in a second process step. The classifica-
tion reflects the priority with which a patient should receive help,
which is taken into account when routing the ambulances in the
third process step. Collecting and classifying a number of requests
before actually sending out the ambulances supports an efficient
use of the vehicles, because instead of dispatching ambulances on a
first-come first-served basis they can be used to serve the most
urgent requests first. Therefore, the first two process steps do not
represent a waste of precious time but they collect valuable
information to come up with high-quality route plans in the third
process step. In fact, the time spent for the first two steps is rather
short if numerous requests arrive within short time (as in the case
of a disaster event) and if the classification of requests is performed
directly while answering an emergency call or automatically from
the collected data. Hence, the three-step process can be repeated at
high frequency (for example each time a certain number of
requests has been collected or a certain time limit has elapsed)
such that it causes little delay in the service process. Clearly, if the
dispatcher classifies an incoming request as so urgent that it
cannot wait at all, a suitable ambulance may be deployed directly
without waiting for further requests. This, however, would con-
stitute a mixed static-dynamic response process, which is out of
scope of this paper. A further advantage of the sketched three-step
process is that up-to-date information regarding the availability of
ambulances, infrastructure conditions, etc., can be included in the
planning.

The scope of this paper is to investigate the routing problem
that occurs in the third step of the response process. The ambu-

lances are used to bring medical personnel to the casualties and to
carry injured people to the hospitals. Each ambulance carries
medical personnel that can provide first aid to slightly injured
people in the field. Seriously injured individuals are accompanied
by the medical staff on their way to the hospital where skilled
doctors are available. According to this, we distinguish two types of
patients:

� Red code patient: A person with red code classification is
seriously injured and needs to be brought to a hospital by an
ambulance.

� Green code patient: A person with green code classification is
slightly injured and can be helped directly in the field.

There exist more detailed classification schemes for patients
(see e.g., [1,13]) and several so-called triage systems have been
developed for classifying and prioritizing patients rapidly in a
mass-casualty incident with an overwhelming number of victims,
limited time and scarce medical resources, see Killeen et al. [24].
The goal of triage is to allocate a limited set of medical resources to
patients such that these resources are used as efficiently as
possible, providing the best possible care to a large number of
patients. The triage system therefore assigns priority to those
patients who will substantially benefit from a rapid intervention,
even if these patients are not the most critical ones. This makes
disaster response different from civil health care where resources
are usually not scarce and the most severe patients always receive
highest priority. Typical triage systems classify and prioritizes
patients based on their conditions into four groups [11]: patients
who require immediate transportation to a hospital, patients who
can wait some time for transportation, patients who require no
hospital treatment, and patients who are unlikely to survive at all.
Including further categories (as done for example in [13]) allows
for a finer distinction of patients and their needs but makes the
application of triage systems more difficult. However, the two
types of patients considered in this paper are sufficient to distin-
guish the fundamental tasks that have to be performed by the
ambulances, namely serving patients in the field and bringing
them to hospitals. For this reason, we just consider two patient
classes in this paper.

Concerning the routing of ambulances, we assume that each of
them can carry one red code patient at a time and that each patient
is directly brought to a hospital after having been picked up. The
decision to which hospital to bring a patient is part of the routing
problem and depends on the capacities of hospitals. Since green
code patients can be helped on the field, an ambulance can go
directly to the next patient after having served a green code
patient. From this, an ambulance can provide help to multiple
people on its route before returning to a hospital. In contrast, if an
ambulance has to serve multiple red code patients, it has to visit
several hospitals throughout the planning horizon. Therefore, for
the purpose of clarity, we refer here to a route as a tour that begins
at one hospital, visits one or more patients in a specified sequence,
and ends at either the starting hospital or at some other hospital.
Hence, an ambulance may perform multiple routes within a
solution to the ambulance routing problem.

The optimization problem is then to determine ambulance
routes to serve the two groups of patients, red code and green
code patients, which have been determined in the first two steps of
the sketched response process. The objective is to minimize the
sum of the latest service completion time among the red code
patients and the latest service completion time among the green
code patients. The objective strives to reduce the longest waiting
time faced by a patient in a group. Although some authors propose
to minimize the average waiting time of patients (e.g., [8]), the
objective pursued in our paper ensures that no patient suffers fromFig. 1. Disaster response process.
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an excessively long waiting time. This maximizes the probability of
survival for the patient who has to wait longest to be served.
Furthermore, we also introduce weights for the latest completion
times of the two patient groups. These weights can be used to
reflect the higher urgency of red code patients, but they can also
result in green code patients being served before red code patients.
The latter reflects real-world triage systems for mass-casualty
incidents where priority is given to those patients who benefit
most from a rapid medical treatment without expending valuable
resources on those for whom there is little hope of recovery. Such a
prioritization is proposed, for example, by Benson et al. [2] who
compute the expected benefit of rendering care with the cost of
achieving that benefit in order to assign the highest priority to
those patients whose treatment yields the greatest value. The
weighted objective function pursued in our paper supports such
a tradeoff of the severity of a help request and the medical
resources required for it. In order to assess a solution with regard
to this performance measure, not only the routes but also the
service start and completion times, i.e., the scheduling of the
ambulance operations, have to be determined. With this paper,
we provide the first models and algorithms to solve this problem.
Since in a disaster situation high-quality ambulance routes have to
be determined in short response times, we particularly strive to
develop powerful heuristic solution methods.

The paper is organized as follows. In Section 2 we review the
relevant literature and relate it to our study. The routing problem is
described and modeled in Section 3 together with an illustrating
example. In Section 4, we present a large neighborhood search
metaheuristic to solve the emergency routing problem. The models
and the metaheuristic are computationally tested in Section 5.
Section 6 concludes the paper.

2. Literature review

There exist several streams of research that address locating,
dispatching, and routing ambulances and supplies in public health
care and in disaster response situations.

Locating ambulances entails finding deployment sites for the
vehicles within an (urban) area such that a certain response time is
guaranteed to reach the potential emergency sites within this area.
Surveys of models and algorithms developed in this field of
research are provided by Brotcorne et al. [5] and Farahani et al.
[9]. The approaches typically belong to the class of covering
location models, see for example the early work of Fitzsimmons
and Srikar [10]. Relocation of ambulances comes into the play
when the coverage becomes inadequate due to ambulances that
are currently dispatched to incidents. In this case, idle vehicles may
have to be relocated to fill gaps in the coverage, which leads to a
dynamic ambulance location problem, see Gendreau et al. [12].
Recent research aims at capturing realistic planning situations like
traffic-dependent traveling times and congestion phenomena. For
example, Schmid and Doerner [38] consider travel times that vary
in the course of a day within an ambulance location problem. From
such variations, the coverage achieved throughout a day by a
certain deployment of ambulances changes dynamically which
calls for relocations. The authors propose a model and a variable
neighborhood search metaheuristic to simultaneously optimize the
coverage for various points in time with varying traffic volumes.
Knight et al. [25] present a model to locate ambulances in such a
way that the expected survival probability of heterogeneous
patients is maximized. The patients differ in the targeted response
time and in their medical conditions. An approximation method is
proposed to solve this type of ambulance location problem.

Dispatching is the task of assigning incoming emergency
requests to ambulances. It is sometimes solved in combination

with the ambulance location problem. For example, Toro-Díaz et al.
[40] present an integrated location and dispatching model that
captures the impact of queuing patients in congested server
systems on the achieved response time and coverage. A genetic
algorithm is proposed to assign locations and requests to the
vehicles. Andersson and Värbrand [1] dispatch ambulances accord-
ing to the urgency of requests and the closeness of a vehicle to the
site of an incident. The authors combine the dispatching with a
relocation of ambulances in order to maintain the coverage of the
service area when some of the ambulances are busy serving
patients. Also Schmid [37] combines dispatching and relocation
where approximate dynamic programming is used to minimize the
expected total response time of requests that occur within the
planning horizon. The routing of ambulances is out of scope of
these papers, because dispatching is concerned with assigning a
single emergency request to a suitable ambulance.

Ambulance routing is considered in some studies as the
problem of finding a shortest (fastest) path from one location to
another taking into account traffic conditions and the infrastruc-
ture damage caused by a disaster, see e.g., Jotshi et al. [22] and
Goldberg and Listowsky [15]. In our paper, ambulance routing is
considered as the problem of finding vehicle routes for a set of
ambulances to serve a given set of patients. Such problems are
often seen as dynamic or real-time vehicle routing problems since
emergencies occur in the course of time at unforeseeable locations,
see e.g., the surveys of Ghiani et al. [14] and Pillac et al. [34]. If
there is a strong degree of dynamism and stochasticity, the routing
problem may be solved by a reactive dispatching policy, cf.
Bertsimas and van Ryzin [4]. However, if several requests occur
in short time, as is assumed in our study, the problem is to find
routes each comprising several patients such that all requests are
served. Such a problem is solved in Créput et al. [8] by means of a
multi-agent approach and local search heuristics with the objective
of minimizing the average waiting time of patients. Wex et al. [42]
investigate a multiple traveling salesman problem that finds its
application in the routing of rescue units that have to serve a given
set of incidents. The authors propose several (meta-)heuristics to
find routes that minimize the total weighted completion time of
the incidents. It is assumed that all patients receive aid in the field
such that transportation to hospitals is not part of the problem.
Transportation of non-urgent patients among hospitals, from
homes to hospitals, or vice versa can be considered as a dial-a-
ride problem, which is to relocate patients from their individual
origin location to their destination, see e.g., Parragh [31] and
Parragh et al. [32]. A dynamic stochastic version of this problem
arises if patients brought to a hospital are discharged the same day
with a certain probability such that their return has to be added to
the vehicle routes, see Schilde et al. [36]. Since the transport
requests are not urgent in these problems, the typical objective is
to minimize the travel effort of vehicles or the tardiness of violated
time windows. Also, the destination of each patient is prescribed in
these problems whereas in disaster response it needs to be decided
to which hospital to bring a patient.

Another stream of research is on disaster relief routing for which
de la Torre et al. [41] provide a recent literature survey. Here, the
scope is on the distribution of humanitarian aid supplies like water,
food, medicine, and survival equipment from distribution centers to
demand points like refugee camps with respect to the available
transport capacities, see e.g., Berkoune et al. [3]. In this field, various
routing problems have been investigated. For example, Campbell
et al. [7] present models and heuristics for traveling salesman and
vehicle routing problems that aim at minimizing the latest arrival
time or the average arrival time at demand locations as is of relevance
in time-critical disaster response actions. Huang et al. [20] investigate
a vehicle routing problem to distribute supplies from a depot with the
goal of a fair allocation of scarce supplies if not all demands can be
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met. Rath and Gutjahr [35] combine distribution planning with
locating supply depots such that a cost measure is minimized and a
maximal coverage is achieved. A hierarchical traveling salesman
problem where demand locations require supplies with different
urgency levels is investigated in Panchamgam et al. [30]. A multi-
commodity flow problem to serve demand locations in multiple truck
trips at minimum time is presented in Berkoune et al. [3]. However,
the transportation of patients is out of scope of all these papers.

A few papers propose multi-commodity flow models to com-
bine the distribution of supplies with the transportation of
patients. Yi and Özdamar [44] present such a model with the
objective of minimizing the weighted sum of unsatisfied demands
and waiting times of injured people. The patients have to be
brought to hospitals and to emergency centers that are set up
temporarily to cope with the disaster. Özdamar and Demir [29]
provide a similar model that minimizes the total vehicle travel time
in order to ensure an efficient utilization of transport capacity and
a fast delivery of supplies. Najafi et al. [27,28] provide extensions of
the model of Yi and Özdamar [44] to cope with different vehicle
types and to support re-planning and robust solutions in dynamic
and stochastic planning situations. The approaches investigated in
these papers are all based on multi-commodity network flow
problems where a detailed routing of vehicles is typically out of
scope. Furthermore, although different categories of patients are
distinguished, all patients have to be brought to a medical station
to be treated. Considering different types of services (first aid in the
field for slightly injured people, transportation to hospitals for
heavily injured people) is not supported by these models.

From this literature review, we observe that disaster response
management is a very active field of research. However, research
mainly concentrates on locating and dispatching of ambulances
and on the distribution of supplies. Ambulance routing has
received only some attention in the literature. In particular, the
routing problem investigated in this study, where some patients
can be served on the field whereas others need to be brought to
hospitals, has not been treated so far.

3. The ambulance routing problem

3.1. Problem description

The aim of the ambulance routing problem is to find routes for a
fleet of ambulances in order to give aid to a set of patients. We
formalize this problem using the notation shown in Table 1. Let R
denote the set of red code patients who have to be picked up by
ambulances to be brought to the hospitals in set H. Let G denote
the set of green code patients who can receive aid directly in the
field. The set of all patients is denoted by P ¼R [ G. The fleet of
ambulances available to give aid to patients is denoted by K. Each
ambulance is initially located at a hospital. We denote by KhDK
the subset of ambulances that are initially located at hospital hAH.
A corresponding binary parameter fkh indicates whether ambulance
k is initially located at hospital h (f kh ¼ 1) or not (f kh ¼ 0). Further-
more, we denote by A¼ fP � Pg [ fH� Pg [ fP �Hg the set of
arcs that are of relevance for the routing problem where tij is the
travel time needed by an ambulance to traverse arc ði; jÞAA. A
service time di is associated to each patient iAP. For red code
patients, di denotes the time required to prepare the patient for
transportation to a hospital. For green code patients, di denotes the
time needed to give first aid to the patient in the field. For the ease
of notation, we also define a transfer time dh for each hospital
hAH, which represents the time required to drop off a red code
patient at this hospital. Finally, ch denotes the capacity of hospital
hAH in terms of the maximum number of red code patients who
can be brought to this location. We assume that the total capacity

of all hospitals is sufficiently large to host all red code patients,
i.e., ∑hAHchZ jRj. We also assume that each ambulance can carry
at most one red code patient at a time and that an ambulance has
to go directly to a hospital with residual capacity after taking up a
red code patient. In contrast, having served a green code patient in
the field, an ambulance can go directly to the next patient (green
code or red code) on its route. We assume that each ambulance
finishes its last route at any hospital.

In order to evaluate the quality of a solution, we define the
service completion time of a red code patient as the point in time
when the patient is dropped off at the assigned hospital. The
service completion time of a green code patient is given by the
completion of the first aid. The objective of the ambulance routing
problem is to minimize a weighted linear combination of the latest
service completion time eR among all red code patients and the
latest service completion time eG among all green code patients.
The latest service completion time among the patients of a group is
considered here because it minimizes the worst case waiting time.
Furthermore, eR and eG are weighted by parameters wR and wG,
respectively, to express the relative importance that a decision
maker probably assigns to the patient groups. In particular, if red
code patients shall be served with utmost priority, a setting
wRcwG will ensure that these patients are served early in the
routing. We next provide an illustrative example. Afterwards, two
mathematical models of the problem are presented in Sections 3.3
and 3.4.

3.2. Illustrative example

We illustrate the problem on a small artificial example. This
instance contains three red code patients R¼ fr1; r2; r3g and seven
green code patients G¼ fg1; g2;…g7g. Two hospitals H¼ fh1;h2g are
available to take up the red code patients, with respective capa-
cities ch1 ¼ ch2 ¼ 3. Two ambulances a1 and a2 are initially located
at hospital h1, i.e., Kh1 ¼ fa1; a2g. A third ambulance a3 is initially
located at h2, i.e., Kh2 ¼ fa3g. Fig. 2 illustrates the locations of all
patients and hospitals. We assume here that the travel times tij of
arcs ði; jÞAA correspond to the Euclidean distance between

Table 1
Notation used to model the ambulance routing problem.

Sets:
R Set of red code patients
G Set of green code patients
P Set of all patients, P ¼R [ G
H Set of hospitals
Kh Set of ambulances that are initially located at hospital hAH
K Set of all ambulances, K¼ [hAHKh

A Set of arcs in a problem, A¼ fP � Pg [ fH� Pg [ fP �Hg
Parameters:

f kh Binary parameter, 1 iff ambulance k is initially located at hospital h (i.e.
kAKh)

tij Travel time from i to j with ði; jÞAA
di Service time of patient iAP
dh Transfer time to drop off a red code patient at hospital hAH
ch Capacity of hospital hAH
wR Priority given to red code patients
wG Priority given to green code patients

Decision variables:

xij
k Binary, 1 iff ambulance k serves patient i directly before patient j (3-index

model)
xij Binary, 1 iff any ambulance serves patient i directly before patient j (2-index

model)
uih Binary, 1 iff red code patient i is brought to hospital h
bi Visiting time of patient iAP, biZ0
eR Latest service completion time among all red code patients
eG Latest service completion time among all green code patients

L. Talarico et al. / Computers & Operations Research 56 (2015) 120–133 123



locations i and j. The service times di are set to 30 time units for red
code patients iAR and to 10 time units for green code patients
iAG. We assume that dropping off a patient at a hospital hAH can
be done in no time, i.e., dh¼0.

Fig. 2 shows a potential route plan for the three ambulances. In
this solution, each ambulance performs two routes. Ambulance a1
starts its first route at hospital h1, picks up red code patient r1 and
brings this patient to hospital h1. On its second route, ambulance a1
serves three green code patients g1, g2, and g4. Ambulance a2 first
picks up red code patient r2 and brings it to hospital h2. Afterwards,
it serves patient g3 before returning to hospital h1. Ambulance a3
starts at hospital h2 and combines the service of two green code
patients with the service of red code patient r3. After having
brought r3 to hospital h2, patient g5 is served in a second route.
In order to determine the quality of this solution, the time–space
diagram in Fig. 3 shows the positions of all ambulances over the
course of time. It can be seen that the latest drop off of a red code
patient at a hospital takes place at time eR ¼ 161. The latest
completion time of serving a green code patient is eG ¼ 269. Note
that a route can start and end at different hospitals, which enables
solutions of high quality where patients are served as quickly as
possible. In our example, this is the case for the routes of
ambulance a2.

3.3. Mathematical formulation: a 3-index model

Using the notation introduced in this section, we propose a
mathematical formulation of the routing problem. The model uses
3-indexed binary decision variables xij

k, which take value 1 if

ambulance k serves patient i directly before patient j and 0 other-
wise. Binary variables uih take value 1 if red code patient iAR is
brought to hospital h and 0 otherwise. The visiting time of patient i,
i.e., the arrival time of the ambulance that gives aid to this patient
is represented by a continuous variable biZ0. The ambulance
routing problem is modeled by (1)–(13)

min wR � eRþwG � eG ð1Þ

s:t:

∑
j AP[H

xkhj ¼ f kh 8hAH; kAK ð2Þ

∑
k AK

∑
j AP[H

xkji ¼ 1 8 iAP ð3Þ

∑
j AP[H

xkji ¼ ∑
j AP[H

xkij 8 iAP; kAK ð4Þ

∑
hAH

uih ¼ 1 8 iAR ð5Þ

∑
i AR

uihrch 8hAH ð6Þ

biþdiþtijrbjþ 1� ∑
k AK

xkij

 !
�M 8 iAG [ H; jAP ð7Þ

biþdiþtihþdhþthjrbjþ 2� ∑
k AK

xkij�uih

 !

�M 8 iAR; jAP; hAH ð8Þ

eGZbiþdi 8 iAG ð9Þ

eRZbiþdiþuih � ðtihþdhÞ 8 iAR; hAH ð10Þ

biZ0 8 iAP [ H ð11Þ

uihA 0;1f g 8 iAR; hAH ð12Þ

xkijA 0;1f g 8ði; jÞAA; kAK ð13Þ

The objective function (1) aims to minimize the weighted sum
of the latest service completion time among all red code patients
and the latest service completion time among all green code
patients. Constraints (2) ensure that each ambulance originates
from the hospital where it is initially located. According to Con-
straints (3), each patient is visited exactly once by one of the
ambulances. Constraints (4) enforce that an ambulance visiting a
patient also has to leave that patient's location. Consequently,
ambulances finish their routes in one of the hospitals. Constraints
(5) and (6) enforce that each red code patient is assigned to exactlyFig. 2. Example solution.

Fig. 3. Time-space representation of the example solution.
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one hospital and that the capacity of each hospital is respected.
Constraints (7) and (8) propagate the arrival times of ambulances
at the patient locations. According to (7), the arrival time bj of an
ambulance at a patient j is determined by the arrival time bi at the
location i (a green code patient or a hospital) visited immediately
prior to patient j, the service time di at location i, and the travel
time tij to go from i to j. If, however, i represents a red code patient,
the detour to bring i to its assigned hospital needs to be included
into the calculation of the arrival time at j. This is ensured by (8).
Here, if an ambulance serves a red code patient i immediately prior
to patient j (i.e., ∑kAKxkij ¼ 1) and if i is assigned to hospital h (i.e.,
uih ¼ 1) then (8) ensures that the arrival time bj at patient j is at
least as large as biþdiþtihþdhþthj, which also includes the time to
go to hospital h and drop off patient i before proceeding to patient
j. This approach allows us to include multiple intermediate returns
of an ambulance to a hospital into a solution. Constraints (9)
determine the latest service completion time eG among all first aid
services provided to green code patients. Constraints (10) deter-
mine the latest service completion time eR of all red code patients.
Note that the service of a red code patient is completed at the time
when the patient is dropped off at the assigned hospital. Con-
straints (11)–(13) define the domains of the decision variables.

Considering the special case of the routing problem with a
single ambulance, a single hospital, no red code patients R¼∅,
and neglected service times di¼0 of green code patients iAG, the
problem reduces to the traveling salesman problem which is
known to be NP-hard [23]. Therefore, the problem studied in this
paper is also NP-hard.

3.4. A 2-index model

Model (1)–(13) uses 3-indexed variables xkij for the routing of
ambulances kAK. However, since all ambulances are identical
except for their initial locations, we can reformulate the model
by dropping index k. Hence, the size of the model can be reduced
with an expected positive impact on the computation time needed
by a MIP solver to find an optimal solution to the routing problem.
In order to reformulate the model, we introduce the binary variable
xijAf0;1g, which takes value 1 if any ambulance serves patient
i directly before patient j. All further notation is as before

min wR � eRþwG � eG ð14Þ

s:t:
∑

j AP [H
xhjr jKhj 8hAH ð15Þ

∑
j AP[H

xji ¼ ∑
jAP[H

xij ¼ 1 8 iAP ð16Þ

∑
hAH

uih ¼ 1 8 iAR ð17Þ

∑
i AR

uihrch 8hAH ð18Þ

biþdiþtijrbjþ 1�xij
� � �M 8 iAG [ H; 8 jAP ð19Þ

biþdiþtihþdhþthjrbjþ 2�xij�uih
� �

�M 8 iAR; jAP; hAH ð20Þ

eGZbiþdi 8 iAG ð21Þ

eRZbiþdiþuih � ðtihþdhÞ 8 iAR; hAH ð22Þ

biZ0 8 iAP [ H ð23Þ

uihA 0;1f g 8 iAR;hAH ð24Þ

xijA 0;1f g 8ði; jÞAA ð25Þ
The objective function in (14) is identical to the objective function

(1) of the 3-index model. Constraints (15) ensure that at most jKhj
ambulances start from hospital h. Constraints (16) conserve the flow
of ambulances at patient locations. Constraints (19) and (20) deter-
mine the arrival times at the patients based on the new routing
variables xij. Constraints (25) define these binary variables. Con-
straints (17)–(18) and (21)–(24)) are taken from the 3-index model.

3.5. Model refinements

The proposed models contain M-terms that are used to compute
arrival times at patient locations. In order to support MIP solvers in
coping with these formulations, in this paragraph we describe how
to determine a value that is sufficiently large to serve as M. The
general idea is to compute for each patient i the maximum time tmax

i
that is needed to reach and to serve this patient. For green code
patients iAG, tmax

i ¼maxkAG[Hftkigþdi because the corresponding
ambulance can be either located at another green code patient or at
some hospital right before going to patient i. For red code patients
iAR, tmax

i ¼maxkAG[HftkigþdiþmaxhAHftihþdhg, including also
the longest possible time that is needed to drop off patients i at
any of the hospitals. Supposing that in the worst case all patients are
served by the same ambulance, therefore M ¼∑iAPtmax

i represents
an upper bound on the arrival time at any patient.

The models may further be extended in different ways. One
issue is to have a good distribution of ambulances across the region
at the end of the service process, especially if the methodology is
used within a repetitive process. This can be achieved by enforcing
that ambulances (i) return to the depots where they started from,
or (ii) are equally distributed across hospitals, or (iii) are located
close to the area where additional patients are most likely to
appear. For the 3-index model, these goals are modeled by
Constraints (26)–(28)

∑
j AP[H

xkjh ¼ f kh 8hAH; kAK ð26Þ

∑
k AK

∑
jAP[H

xkjhr⌈
jKj
jHj⌉ 8hAH ð27Þ

∑
k AK

∑
jAP[H

xkjh ¼ ah 8hAH ð28Þ

Constraints (26) enforce that each ambulance finally returns to
its initial hospital location whereas (27) equally distribute the
ambulances among the hospitals. Constraints (28) can be used to
enforce a certain number ah of ambulances at hospital h. In order to
locate ambulances close to locations where additional patients are
most likely to appear, one can add artificial hospitals h0 to set H.
Such an artificial hospital has no capacity (ch0 ¼ 0) and no initial
ambulances (Kh0 ) but it can be used for absorbing a certain number
ah0 of ambulances at the end of the service process. The corre-
sponding constraints for the 2-index model are given by (29)–(31).
Constraints (29) guarantee that the initial number of ambulances is
finally located at each hospital again whereas Constraints (30)
balance the number of ambulances among the hospitals at the end
of the service process. Constraints (31) guarantee a certain number
of ambulances, which can also be used for deploying ambulances at
arbitrary locations that are represented by artificial hospitals added
to set H
∑

j AP[H
xjh ¼ jKhj 8hAH ð29Þ

∑
j AP[H

xjhr
jKj
jHj

� �
8hAH ð30Þ
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∑
j AP [H

xjh ¼ ah 8hAH ð31Þ

Note that in the remainder of the paper, we consider the basic
models described in Sections 3.3 and 3.4 without the extensions
described by Constraints (26)–(31).

4. Solution approach

The circumstances in which the ambulance routing problem
described in this paper is solved require a fast and robust solution
approach. To be useful in disaster situations, the ambulance routing
problem must be solved within seconds in order to respond
properly to the emergency requests and to replan the routing if
updated information becomes available. In addition, the quality of
the solutions is an important aspect determining the waiting times
for the patients, which should obviously be as short as possible.
These reasons warrant the development of a (meta)heuristic solu-
tion approach, which is usually faster than an exact approach, and is
expected to produce solutions of near-optimal quality.

Algorithm 1. LNS metaheuristic.

1 Initialize metaheuristic parameters I and L;
2 Let sn be the best solution found so far and f ðsnÞ be its

objective function value;
3 Let s be the current solution and f(s) be its objective

function value;
4 sn; s’∅, f ðsnÞ; f ðsÞ’1;
5 Let i be the iteration counter;
6 Let l be the counter for iterations without improvement;
7 i’0 , l’0;
8 while ðio IÞ do
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

:

if ði¼ 03 l¼ LÞ then == Initialstage

random’RandIntð½0;1�Þ;
α’RandIntð½2;5�Þ;
switch ðrandomÞ do
case ðrandom¼ 0Þ do
js’InsertionHeuristicðαÞ
case ðrandom¼ 1Þ
js’ConstructiveHeuristicðαÞ;

���������
l’0;

�������������������
else == Diversification of existing solution

random’RandIntð½0;2�Þ;
switch ðrandomÞ do
case ðrandom¼ 0Þ do
js’Rem2ðsÞ;
case ðrandom¼ 1Þ
js’RemrandðsÞ;
case ðrandom¼ 2Þ
js’RemallðsÞ;

��������������
s’RepairðsÞ;

���������������������
s’VNDðsÞ; == Intensification

if ðf ðsÞo f ðsnÞÞ then == Newbestsolution?

sn’s;

l’0;

����
else
jlþþ ;

iþþ ;

���������������������������������������������������������������
35 Return sn. // Return best solution

We propose here a large neighborhood search (LNS) metaheur-
istic to solve the ambulance routing problem. The iterative nature
of the LNS metaheuristic and the presence of diversification
mechanisms allow the procedure to escape from local optima such
that various parts of the solution space can be explored in a limited
amount of computing time. The operating principle of the LNS
metaheuristic is based on three stages:

� Initial stage: An initial solution for the ambulance routing
problem is generated by one of two randomly selected heuristic
approaches, which are described in Section 4.1.

� Intensification stage: The current solution is improved by a large
scale neighborhood search (so-called variable neighborhood
descent (VND) heuristic), which uses nine different local search
operators. The VND heuristic is described in Section 4.2.

� Diversification stage: To reach unexplored areas of the solution
space, the current solution is first partially destroyed by select-
ing randomly one of the three destroy operators described in
Section 4.3. Afterwards it is reconstructed by applying a repair
operator. The modified solution then becomes the input of the
intensification stage.

Two parameters I and L determine the behavior of the LNS
procedure. I is the total number of iterations performed by the
algorithm. L is a limit on the number of iterations without improve-
ment. If L iterations have been performed without finding a new best
solution, LNS restarts the search process by generating a new initial
solution. This generation process is randomized to produce a solution
that has not been investigated earlier in the search process. The LNS
method is outlined in further detail in Algorithm 1. After the
initialization phase, the method starts its first iteration (i¼0) by
constructing an initial solution, see lines 9–17. Here, one of the two
available heuristics for the generation of new solutions is picked
randomly. Furthermore, a parameter α (described in Section 4.1) is
determined and given to these procedures to guide the randomized
solution construction process. In later iterations, when a solution
already exists, the search process is diversified to escape from local
optima by randomly selecting a destroy operator and by repairing the
resulting solution, see lines 19–27. The search is intensified by applying
the VND-local search method to the current solution in line 28. In line
29, it is checked whether a new best solution is found, which is then
stored. In this case, counter l for the number of iterations without
improvement is reset, otherwise incremented (line 33). If the counter
reaches the limit L, the LNS method generates a new initial solution,
see again line 9. After a total of I iterations, the LNS metaheuristic
terminates by returning the best solution found. The components of
the LNS metaheuristic are described in detail in the following sections.

4.1. Initial stage

The LNS procedure embeds two different heuristics to generate
initial feasible solutions to the ambulance routing problem. The
first heuristic is referred to as Insertion heuristic. It starts by
building a single route for all green code patients and then inserts
the red code patients one after the other. The second heuristic is
called the Constructive heuristic. It builds routes simultaneously for
green and red code patients. Both procedures are designed to
respect the different services required by green code patients
(which can be served in the field where, afterwards, the ambulance
can go directly to the next patient) and red code patients (which
have to be picked up and brought to a hospital with free capacity).
Furthermore, both methods contain random components to deliver
different solutions as is needed to exploit the restart capability of
the LNS metaheuristic.
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Algorithm 2. Insertion heuristic.

1 Let a be a randomly selected ambulance
and let h be the hospital where a is located;

2 Let r be a TSP route that starts and ends
at h visiting all patients in G;

3 Assign route r to ambulance a;
4 while (not all patients have been visited) do
5
6
7
8
9
10
11
12

Let j be a randomly selected and so far unvisited red code patient;
Let C be a candidate list of α least� cost positions to insert j into current routes;
Randomly select an insertion position iAC;

Split the corresponding route right after position i;
Append j to the first sub� route and close this route by appending the nearest hospital with free capacity;
Let â be the ambulance that becomes available earliest in the current solution;

Let ĥ be the current location of â;

Let the second sub� route start at ĥ and assign this route to â;

�������������������
13 Return solution s.

Algorithm 3. Constructive heuristic

1 while (not all patients have been visited) do

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Let a be the ambulance that becomes available earliest in the current solution;
Let h denote the hospital where ambulance a is currently located;
Define a new route r for ambulance a with starting point h;
Let CP be a candidate list of α unserved patients who are located closest to h;
Let i be a patient randomly selected from CP ;

Append i to route r;

if ðiARÞ then == Red code patient requires closing the route

Let CH be a candidate list of α available hospitals that are closest to i;

Let h be a hospital randomly selected from CH ;

Close route r by appending hospital h;

�������
else == Route r is potentially extendible

while ðnot all the patients have been visitedÞ do
Let CP be a candidate list of α unserved patients who are located closest to i;
Let j be a patient randomly selected from CP ;

if ðjARÞthen == Red code patient requires closing the route

Append j to route r;
Let CH be a candidate list of α available hospitals that are closest to j;

Let h be a hospital randomly selected from CH ;

Close route r by appending hospital h;
break; == Restart from line 1

������������
else == Route r can be extended

Let âaa be the ambulance that becomes idle earliest in current solution;
Let Tâ denote the time at which â becomes idle;

Let ĥ be the hospital where ambulance â is currently located;
Let bi be the time at which patient i is visited by ambulance a;

if ðbiþdiþtijrTâ þtĥjÞ == Extend route r of ambulance a

Append j to route r;

i’j;

����
else == Close route r of ambulance a

Let CH be a list of α hospitals that are closest to i;

Let h be a hospital randomly selected from CH;

Close route r by appending hospital h;
break; == Restart from line 1

���������

������������������������������

�����������������������������������������������������

��������������������������������������������������������

�����������������������������������������������������������������������������������
35 Return solution s.

L. Talarico et al. / Computers & Operations Research 56 (2015) 120–133 127



The Insertion heuristic is outlined in Algorithm 2. It initially
produces a single giant route that connects all green code patients
iAG, see line 2. For this purpose, we solve a traveling salesman
problem (TSP) using the well-known heuristic of Lin and Ker-
nighan [26]. We have chosen the Lin–Kernighan heuristic as it is
considered to be one of the most effective methods for the TSP, and
has found the best-known solutions to a large number of bench-
mark problems. The method used in our paper is the modified Lin–
Kernighan heuristic proposed in Helsgaun [16–18], which is a
highly efficient implementation from a computational point of
view. Once the giant route has been generated for the green code
patients, the red code patients are inserted using a variant of the
insertion heuristic proposed by Solomon [39]. Since red code
patients have to be brought to hospitals, including such a patient
in a route actually means to split this route into two new ones.
More precisely, the insertion procedure iterates through the red
code patients and includes one patient jAR into the route plan per
iteration. For this purpose it determines a candidate list C of α
feasible and least-cost insertion positions to include j into one of
the current routes, see line 6. Then, the procedure randomly selects
an insertion position iAC and splits the corresponding route into
two sub-routes, see lines 7 and 8. The first sub-route contains the
patients up to and including i. The second sub-route contains
patient iþ1 and the following ones. Then, red code patient j is
appended to the first sub-route and this route is closed by selecting
the hospital that takes up this patient, see line 9. For the second
sub-route, a new ambulance and, thus, starting location is deter-
mined in lines 10–12. The procedure ends if all patients have been
added to the solution.

The Constructive heuristic is outlined in Algorithm 3. It builds a
solution step-by-step by adding one patient at a time to a route
plan until all patients P are served by the ambulances. The
procedure starts by creating a new route for one of the ambulances
in lines 2–4. Then, using a greedy randomized selection process, a
patient i is randomly selected from a restricted candidate list CP of
α unserved patients and added to the route, see lines 5–7. If the
selected patient i is a red code patient, the route is closed by
selecting a hospital from a candidate list CH of α closest hospitals
with free capacity, see lines 8–11. Otherwise, if the patient i is a
green code patient, the route is potentially extendible by adding
further patients, which is investigated in lines 12–34. For this
purpose, an unserved patient j that is nearby patient i is randomly
selected in lines 14 and 15. If patient j is a red code patient, j is
added to the route, a hospital is selected, the route is closed, and
the procedure restarts a new iteration, see lines 16–21. Otherwise,
if j is a green code patient, it is checked in lines 23–26 whether
there exists an alternative ambulance â that can reach j at an
earlier point in time than the currently considered ambulance a. If
this is not the case, j is appended to the current route r of
ambulance a, see lines 27–29. If, however, ambulance â can reach
j earlier than ambulance a, route r of ambulance a is closed and the
algorithm starts a new iteration, see lines 30–34. Patient j is then
added to a new route in one of the following iterations of the
Constructive heuristic. The procedure ends if all patients have been
added to the solution.

4.2. Intensification stage

During the intensification stage of the LNS metaheuristic,
solutions are improved by means of local search. For this purpose,
we have adopted several of the most common local search
operators for vehicle routing problems [6]. In total, we use nine
local search operators that are listed in Table 2 and described
afterwards. The four intra route operators search for improvements
within a route:

� Internal patients relocate: A green code patient contained in a
route is relocated to another position within this route. If the
route contains a red code patient, the green code patient is not
allowed to be placed behind the red code patient, because the
latter needs to be brought to a hospital directly. Therefore, red
code patients appear only at the end of a route and, hence,
relocating them using the local search is not an option.

� Internal patients swap: The positions of two green code patients
who both belong to the same route are exchanged.

� Internal patients 2-opt: Two edges ði; iþ1Þ and ðj; jþ1Þ contained
in one route are replaced by edges ði; jÞ and ðiþ1; jþ1Þ. Such a
neighborhood move also reverses the order in which the
patients in between iþ1 and j are served. Again, moves that
would relocate a red code patient are forbidden.

� Single hospital change: The hospital at which the route ends is
replaced by another hospital. If the route involves a red cod
patient, the new destination hospital must have at least one free
capacity unit.

The following five inter route operators address the routings of
two different ambulances:

� External patients relocate: A patient i is removed from an
ambulance route and inserted into another route. Let j denote
the patient in the new route behind which patient i is inserted.
The neighborhood move replaces edges ði�1; iÞ, ði; iþ1Þ and
ðj; jþ1Þ by edges ði�1; iþ1Þ, ðj; iÞ and ði; jþ1Þ. Note that the
operation is only feasible if j is not a red code patient.

� External patients swap: Two patients i and j that are served in
different routes are exchanged. The neighborhood move
replaces edges ði�1; iÞ, ði; iþ1Þ, ðj�1; jÞ and ðj; jþ1Þ by edges
ði�1; jÞ, ðj; iþ1Þ, ðj�1; iÞ and ði; jþ1Þ.

� External patients 2-opt: This operator considers two patients i
and j belonging to different routes. Both routes are split right
after patients i and j and the detached sub-routes are
exchanged. In other words, all patients who followed patient i
on its original route now follow patient j and vice versa. The
move is performed by replacing edges ði; iþ1Þ and ðj; jþ1Þ by
edges ði; jþ1Þ and ðj; iþ1Þ.

� Hospitals swap: The destination hospitals at which two different
routes end are exchanged. For example, consider two routes r1
and r2 that end at hospitals h1 and h2, respectively. The hospitals
are swapped such that route r1 now ends at h2 whereas route r2
now ends at h1. A swap is only feasible if it does not violate the
hospital capacities. For example, if route r1 includes a red code
patient and r2 does not, the new destination hospital h2 of route
r1 must have a free capacity unit.

� Route reassignment: This operator removes a route from its
ambulance and assigns it to another ambulance.

The local search operators are combined in a variable neighbor-
hood descent (VND) heuristic that is outlined in Algorithm 4. The
VND heuristic improves the current solution by exploring the nine
neighborhoods one after the other. Each neighborhood is examined
by a first-improvement descent strategy, accepting only feasible
moves that lead to an improvement of the current solution.

Table 2
Local search operators used in the VND heuristic.

Nλ Intra route operators Nλ Inter route operators

N1 Internal patients relocate N5 External patients relocate
N2 Internal patients swap N6 External patients swap
N3 Internal patients 2-opt N7 External patients 2-opt
N4 Single hospital change N8 Hospitals swap

N9 Route reassignment
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Although the order in which the neighborhoods are investigated
may have an impact on the quality of the obtained solutions, we
did not observe such an effect in some preliminary experiments.
Therefore, VND explores the neighborhoods in the order shown in
Table 2. If, during the search process, a solution is found that is
better than the best solution known so far, the best solution is
updated and VND intensifies the search by restarting from the first
neighborhood. The procedure terminates if the current solution
cannot be further improved by any of the local search operators
and, thus, a common local optimum has been reached for all the
neighborhoods.

Algorithm 4. VND heuristic.

1 Let s be the current solution and f(s) be its objective function
value;

2 Let sn be the best solution found so far and f ðsnÞ be its
objective function value;

3 λ’1 // Start with first neighborhood

4 repeat
5
6
7
8
9
10

s’NλðsÞ== Find best solution within neighborhood

if ðf ðsÞo f ðsnÞÞ then == New best solution?

sn’s;

λ’1 == Restart with first neighborhood

����
else
jλþþ == Continue with next neighborhood

��������������
11 until ðλ¼ 9Þ
12 Return sn.

Note that the quality of a solution can only be improved by
modifying routes of those ambulances that serve the green code
patient and the red code patient with the latest service completion
times eG and eR. We refer to the vehicles serving these patients as
the critical green ambulance and the critical red ambulance. In order
to speed up the VND heuristic, we restrict the local search to the
routes of the two critical ambulances. Since each of these ambu-
lances may have assigned multiple routes in a solution, all nine
neighborhoods can yield improvements even if the search is
restricted to the two vehicles.

4.3. Diversification stage

In order to escape from the local optima that are reached in the
intensification stage, a diversification mechanism is used to reach
unexplored areas of the solution space. The diversification strategy
consists of a destroy step that eliminates some of the routes
contained in the best solution found so far. Afterwards, a repair
step is performed to assign the now unserved patients to non-
destroyed routes or to build new routes for them. Then, LNS again
applies the intensification stage to improve the obtained solution
and so on. For the destroy step, three different operators have been
implemented:

� Remove two routes (Rem2): This operator destroys two routes of
the current solution. The first route to be destroyed is the one
that contains the green code patient with the latest service
completion time, i.e., the patient who determines eG. The
second route is the one that contains the red code patient
who determines value eR. If both these patients are served in
the same route, only this single route is destroyed.

� Remove a random number of routes (Remrand): Let the critical
green ambulance (critical red ambulance) be the vehicle that

serves the green (red) patient who determines the objective
value eG (eR). Each of these vehicles can perform more than one
route in the current solution to bring various red code patients
to hospitals and to serve a number of green code patients.
Therefore two random numbers randG and randR are uniformly
generated in the ranges ½1;NG� (for the critical green ambu-
lance) and ½1;NR� (for the critical red ambulance) respectively,
where NG represents the maximum number of routes contained
in the critical green ambulance, while NR is the maximum
number of routes assigned to the critical red ambulance. Then
the destroy operator removes randG and randR of these routes
from the green and red critical ambulances.

� Remove all routes (Remall): All the routes of both critical
ambulances are destroyed. If the critical green ambulance
coincides with the critical red ambulance, only the routes
performed by this single ambulance are removed.

Each time the diversification stage is applied, one of the aforemen-
tioned destroy operators is randomly selected. The destroyed
solution is then repaired using the greedy randomized selection
mechanism proposed for the Constructive heuristic of Section 4.1.

5. Computational study

In this section, we describe the computational experiments that
were executed to evaluate the performance of the proposed
models and heuristics. Since the ambulance routing problem
described in this paper has not been studied before, no benchmark
instances are available in the literature. We therefore generate a
large set of test instances in Section 5.1, which are made available
to other researchers upon request.

The computational experiments are divided into three parts. In
the first experiment, described in Section 5.2, we compare the two
optimization models regarding their potential to produce optimal
solutions for the ambulance routing problem. In Section 5.3, we
assess the performance of the LNS metaheuristic. In the third
experiment, presented in Section 5.4, we perform sensitivity tests
to analyze the relationship between the structure of a problem
instance and its solution.

5.1. Test instances and LNS parameter setting

In order to test both the mathematical models and the meta-
heuristic algorithm presented in this paper, a large set of test
instances has been generated to capture various planning situa-
tions. We have produced instances with a varied number of red
code and green code patients, hospitals, hospital capacities, and
ambulances. These parameters are varied as follows:

� Total number of patients:
low (jPj ¼ 10), medium (jPj ¼ 25), high (jPj ¼ 50)

� Percentage of red patients:
low (jRj ¼ 25% � jPj), medium (jRj ¼ 50% � jPj), high
(jRj ¼ 75% � jPj)

� Number of hospitals: jHj¼1, 2, 3 or 4
� Hospital capacity:

low (∑hAHch ¼ 1� jRj), medium (∑hAHch ¼ 1:5� jRj), high
(∑hAHch ¼ 2� jRj)

� Number of ambulances:
low (jKj ¼ 0:05� jPj), medium (jKj ¼ 0:25� jPj), high
(jKj ¼ 0:5� jPj)

One test instance was produced for each combination of the
above parameters, which yields a total of 324 instances. For each
instance, the locations of hospitals and patients was randomly
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drawn in an area of size 200�200, with travel times tij corre-
sponding to the Euclidean distance. The service duration di of red
code patients iAR was randomly drawn from the interval ½2;15�.
The service duration di of green code patients iAG was selected in
the interval ½5;35�. Dropping off a red code patient at a hospital is
done in no time, i.e., dh¼0 8hAH. The available jKj ambulances
and the hospital capacity are shared randomly among the hospitals
contained in an instance.

In order to test the impact of the priority assigned to red and
green code patients, we further associated the 324 instances to
different combinations of weights wG and wR. The four combina-
tions shown in Table 3 were considered. Associating these para-
meters to each of the test instances yielded a total of 1296
instances for the experiments.

To perform the experiments, the LNS metaheuristic was coded
in Java. The metaheuristic requires two parameters to be set: the
number of iterations I to perform and the number of non-
improving iterations L after which the heuristic generates another
initial solution. It is clear that a higher value I makes finding better
solutions more likely at the expense of a longer computation time.
In preliminary experiments, we observed that the heuristic con-
verges quickly, and that I¼ 200 offers a good compromise between
runtime and solution quality. Moreover, we set L¼ I=10 as this
delivered good results in the pretests. Finally, since the metaheur-
istic involves various elements of randomness, finding better
solutions may also be achieved by repeating the solution process
a number of times. For this purpose, we repeat the heuristic 50
times when solving an instance. In the remainder of this section,
the presented LNS-solutions are the best out of these 50 runs and
the reported cpu-times are the total for all runs. All experiments
have been performed on an Intel core i7-2760QM 2.40 GHz
processor with 4 GB RAM.

5.2. Evaluation of the optimization models

To compare the two models presented in Section 3, we solve
them using the MIP-solver CPLEX 12.4, see Ilog [21]. More
precisely, we apply CPLEX to solve both models for each of the
324 test instances with weights wG and wR both set to 1. For each
instance, a maximum computation time of 1 h was defined as a

stopping condition whenever the optimal solution is not obtained.
We report in Table 4 aggregated results for each model and for the
sets of 108 instances with a low (jPj ¼ 10), a medium (jPj ¼ 25),
and a high (jPj ¼ 50) number of patients. The table shows the
number of integer feasible solutions (#feas) found for an instance
set, the number of optimal solutions (#opt), the average lower
bound (LB), the average objective function value (obj), and the
average computation time (cpu) required by CPLEX. Column imp
provides the percentage gap between the average objective func-
tion values of the solutions found by the 2-index model and the
3-index model.

From the results, we see that the 3-index model consistently
delivers feasible solutions only for the small sized instances,
whereas the 2-index model delivers feasible solutions for all
instances. The 2-index model also yields more optimal solutions
for medium and large instances. The obtained lower bounds are
stronger but still too weak for assessing the quality of the solutions,
in particular for the larger instances. From the objective function
values, we take that the 3-index model is clearly outperformed by
the 2-index model for medium and large instances, where the
2-index model achieves average improvements of up to 38.2%. Row
Δ in Table 4 aggregates the key performance measures. It shows
that the 2-index model delivers additional 27 feasible and 15
optimal solutions. The lower bound increases by 33 units on
average and the objective function value reduces by 391 units on
average. Furthermore, the average computation time is about
5 min lower than for the 3-index model. It becomes clear that
the 2-index model is superior with respect to all the key perfor-
mance measures. However, even the computation time required by
this model clearly exceeds what is considered applicable in a
disaster response process. For this reason, the model's results can
be used for an assessment of heuristics but it appears inappropriate
to apply the model itself to solve the ambulance routing problem
in practice.

5.3. Evaluation of the LNS metaheuristic

For the second experiment, all 1296 instances are solved using
the LNS metaheuristic. The heuristic is evaluated by comparing its
results to those obtained by the 2-index model. Table 5 reports key
performance measures for both approaches and each subset of 108
test instances with differing weights wR and differing instance size.
We see that the number of optimal solutions and the cpu times
observed for the 2-index model are hardly affected by the weight
wR, indicating that the urgency of red code patients has a limited
effect when solving the problem using CPLEX. The LNS metaheur-
istic produces a slightly lower number of optimal solutions.
Actually, LNS finds 396 out of the 406 optimal solutions identified
by CPLEX. Furthermore, the average solution quality is better for all
sets of medium sized and large sized instances, i.e. the average
objective value obj of LNS is lower for these sets compared with
CPLEX. This shows that the meta-heuristic provides a systematic

Table 3
Variation of weights evaluated in the experiments.

Weights Relative importance of
red code patients

# of
instances

wG wR

1 1 50% 324
1 2 67% 324
1 5 83% 324
1 10 91% 324

Total 1296

Table 4
Computational results achieved by the two proposed models.

# of
patients

# of
instances

3-index model 2-index model

# feas.
(–)

# opt.
(–)

LB
(–)

obj
(–)

cpu
(s)

# feas.
(–)

#opt.
(–)

LB
(–)

obj
(–)

cpu
(s)

imp
(%)

Low 108 108 79 611 881 1416 108 79 617 881 1165 0.0
Medium 108 107 9 279 1399 3524 108 21 359 1069 3011 23.5
High 108 82 0 256 2205 3600 108 3 270 1363 3504 38.2

Δ þ27 þ15 þ33 �391 �287
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advantage for these problems. Furthermore, LNS is much faster
than CPLEX. The cpu time for repeating LNS 50 times ranges from
one second to about 2.5 min depending on the instance size.
A single solution to a large instance is produced in less than 3 s.
These computation times show that the LNS method is applicable
in a dynamic disaster response process, as it produces solutions
quasi-instantaneously.

The improvement potential of the heuristic is further analyzed
in the last four columns of Table 5. Column #imp shows the
number of instances of a set for which LNS produces a better
solution than CPLEX. We observe that the metaheuristic can hardly
achieve improvements for instances of small size whereas it
achieves a substantial number of better solutions for instances of
medium and large size. In particular, for the problems with a high
number of patients, LNS delivers better solutions for up to two-
thirds of the instances in a set. Columns worst, avg, and best reveal
the extreme values and the average value of the relative improve-
ments observed over all instances of a set. Note that a negative
value in these columns indicates that the heuristic delivered a
solution with an objective value larger than the one achieved by
CPLEX. The results confirm that LNS and CPLEX produce solutions
of almost identical quality for the small instances, but LNS requires
just a few seconds for the computation. For instances of medium
size, LNS delivers solutions that show a 3%-improvement on
average, with a maximum improvement of 23.7% if red code
patients are considered urgent (wR ¼ 5). For the large instances,
the LNS is clearly advantageous with average improvements ran-
ging from 6.7% (wR ¼ 10) to 12.6% (wR ¼ 1) and maximum
improvements of up to 37.1%. These results confirm that the
developed heuristic is a powerful solution method in particular
when it is required to solve large instances to good quality within
short response time.

Since the metaheuristic involves several elements of random-
ness, we also determine the contribution of these techniques to the
generation of high quality solutions. In particular, the metaheur-
istic randomly decides whether to use the Insertion heuristic or the
Constructive heuristic to generate initial solutions. Moreover, in the
diversification stage, the destroy operator used is randomly
selected. Finally, the Insertion heuristic and the Constructive heur-
istic both use greedy randomized mechanisms to select patients,
hospitals, and insertion positions from restricted candidate lists of
size α. The value α is a random integer in the interval ½2;5�, which is
drawn by the LNS metaheuristic each time a new initial solution is
generated. In order to evaluate the contribution of the different
randomization techniques, the following methodology was used.
For each of the final solutions of the 1296 instances, the heuristic

that was used to generate the corresponding initial solution, the
applied destroy operator, and the value of α were tallied. Table 6
illustrates the relative frequencies observed for the different
settings of these parameters while we solved the 1296 instances.
It can be seen that the Insertion heuristic, the Remall destroy
operator, and a value of α¼ 2 most often result in the best solution.
Nevertheless, the other components are involved in the generation
of a sizeable number of best solutions.

5.4. Problem structure and solution quality

In the third experiment, we analyze the relationship between the
structure of an instance and the best solution found by the LNS
metaheuristic. We first investigate the impact of the number of
ambulances. For this purpose, we distinguish subsets of instances
with a low, a medium, and a high number jKj of ambulances as
defined in Section 5.1. The objective weights wR and wG are both set
to 1. Fig. 4 shows the following performance measures averaged over
all instances belonging to a subset: objective function value obj, latest
service completion times eR and eG of red code and green code

Table 5
Comparison of results delivered by the 2-index model and the LNS metaheuristic.

Weight
wR

# of
patients

# of
instances

2-index model LNS #imp
[-]

rel. imp.

# opt
(–)

obj
(–)

cpu
(s)

#opt
(–)

obj
(–)

cpu
(s)

worst
(%)

avg
(%)

best
(%)

1 Low 108 79 881 1165 79 881 2 2 �0.2 0.0 1.9
1 Medium 108 21 1069 3011 19 1026 24 60 �3.1 3.0 17.1
1 High 108 3 1363 3504 3 1085 126 79 �2.0 12.6 37.1
2 Low 108 80 1473 1236 80 1475 1 5 �2.5 �0.1 0.3
2 Medium 108 18 1870 3112 16 1785 24 64 �4.0 3.3 21.8
2 High 108 3 2233 3505 3 1854 135 74 �2.2 10.9 32.4
5 Low 108 80 3086 1164 79 3091 2 2 �3.4 �0.1 0.8
5 Medium 108 19 4183 3034 17 3981 26 64 �2.1 3.4 23.7
5 High 108 0 4532 3600 0 4013 145 76 �1.3 7.4 29.3

10 Low 108 84 5655 1046 83 5660 4 0 �2.3 0.0 0.0
10 Medium 108 16 7834 3135 14 7543 27 68 �1.0 2.8 17.4
10 High 108 3 8348 3520 3 7493 159 70 �4.4 6.7 32.2
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Fig. 4. Impact of the number of ambulances.

Table 6
Contribution of LNS-components to finding best solutions.

Initial solution Destroy step α

Method Frequency Operator Frequency Value Frequency

Insertion heuristic 55% Rem2 34% 2 40%
Constructive heuristic 45% Remrand 23% 3 32%

Remall 43% 4 18%
5 10%
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patients, and computation time cpu required to produce one solution
for a problem instance. Note that eR is larger than eG in these results,
because the service of red code patients ends at their delivery to a
hospital whereas the service of green code patients ends directly
after having been treated in the field. As expected, a larger number of
ambulances result in a better service (lower objective values). We see
that the latest completion times of both red code patients and green
code patients benefit from a medium number of ambulances.
However, the marginal contribution of additional vehicles decreases
such that the objective values do not decline further if a high number
of ambulances is available. These computations show that the
presented approach can be useful in determining the fleet size
required in a disaster situation.

Fig. 5 analyzes the impact of the number of hospitals (left
figure) and the impact of the total hospital capacity (right figure).
Regarding the number of hospitals, we distinguish instances with
jHj ¼ 1, 2, 3, and 4 hospitals. The total hospital capacity ∑hAHch is
varied from low to medium and to high in relation to the number
of red code patients as described in Section 5.1. The considered test
instances comprise all the combinations of objective weights wR

and wG from Table 3. According to Fig. 5 (left), a larger number of
hospitals clearly help in serving red code patients by reducing the
trip duration to transport them to a hospital of free capacity. In fact,
the larger the number of hospitals is, the lower the value eR
becomes. This experiment shows that the method can also be used
to determine whether patients would benefit from setting up
temporary hospitals like medical camps. Although the average
computation time grows with a larger number of hospitals, it stays
around one second even for the largest number of hospitals. The
capacity of hospitals seems to have only a minor effect on the
obtained solutions, see Fig. 5 (right). Although a higher capacity
means that there is a higher chance for red code patients to find
free capacity at a nearby hospital, we do not observe a significant
reduction in the latest service completion time here. The explana-
tion is that the patients and hospitals are widely spread over the
whole area in these instances such that most red code patients find
a hospital in their surrounding even if the overall capacity is low.

Finally, we investigate the impact of having a low, a medium, or
a high percentage of red code patients, see Fig. 6(left), and of
considering red code patients equally important as green code

patients (wR ¼wG ¼ 1) or more important (wR ¼ 2;5;10), see Fig. 6
(right). As expected, if the percentage of red code patients
increases, the latest service completion time among these patients
increases because the ambulances have to bring more patients to
the hospitals. At the same time, the latest service completion time
eG of green code patients reduces, because fewer such patients
need assistance. Interestingly, the computation time decreases
although a higher percentage of red code patients means more
decisions to assign patients to hospitals. However, an increase in
the percentage of red code patients also means a reduction in the
number of green code patients, which in turn reduces the number
of decisions to group and sequence green code patients on a same
ambulance route. The relative importance of red code patients in a
solution is controlled by parameter wR. In Fig. 6 (right) we see that
a larger value wR indeed reduces the latest service completion time
eR of red code patients at the cost of the latest service completion
time eG of green code patients. Also the average objective function
value increases with a larger value of wR, but this can be attributed
to the fact that the objective function sums up the two weighted
service completion times. This experiment confirms that the
metaheuristic effectively considers the weights wR and wG to
produce ambulance routes that reflect the different priorities of
red code patients and green code patients.

6. Conclusions

In this paper an ambulance routing problem for disaster
response is investigated, where patients require different types of
services. We have proposed two mathematical models. Computa-
tional tests show that a 2-index formulation outperforms a 3-index
formulation. However, although problem instances will be of
rather small size because the routing problem is solved at high
frequency in disaster response, the exact solution of the optimiza-
tion model takes an unacceptably long time. Therefore, a large
neighborhood search metaheuristic has been proposed to solve the
ambulance routing problem in very short response time, with the
aim to assist all patients as fast as possible. Experiments on a very
large set of test instances show that the heuristic delivers solutions
of excellent quality. Several further experiments demonstrate that
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Fig. 5. Impact of the number of hospitals (left) and the hospital capacity (right).
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the proposed planning approach can be used to support decisions
regarding the fleet size of ambulances and the number and
capacities of hospitals. Furthermore, the metaheuristic can be
controlled to produce routes that take into account the different
priority of slightly and seriously injured patients.

Future research may aim at incorporating further aspects such
as different types of ambulances, time windows, or constraints on
the route length, e.g., before refueling is needed. The models might
be extended for example to support ambulances that are capable of
transporting more than one red code patient at a time, such that
help can be provided faster to people in need of medical assistance.
Moreover, the ambulance routing problem may be adapted to the
public health care sector. In fact the two classes of patients
considered in this paper may also be used to model patients
requiring services at their homes (like, for example, physiotherapy)
and patients who have to be transported to certain health care
facilities to receive hospital treatment.
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