
European Journal of Operational Research 179 (2007) 838–846

www.elsevier.com/locate/ejor
Multi-objective optimization of mobile phone keymaps
for typing messages using a word list

Kenneth Sörensen *

University of Antwerp, Faculty of Applied Economics, Prinsstraat 13, B-2000 Antwerp, Belgium

Received 13 April 2004; accepted 7 March 2005
Available online 1 December 2005
Abstract

Most mobile phones today offer the option of using a word list to ease the typing of short messages (SMS). When a
word list is used, a word is input as a sequence of digits by pressing the key corresponding to each letter once. The word
list is used to look up the word(s) that correspond to this sequence of digits. This paper describes how a mobile phone
keyboard layout can be obtained that is better suited for typing such messages. Two objectives are considered: the total
cost of typing, and the total cost of word clashes that occur when a certain digit sequence corresponds to two or more
words in the word list. A multi-start descent algorithm is developed to obtain a Pareto set of solutions.
� 2005 Elsevier B.V. All rights reserved.

Keywords: SMS; Mobile phone; Keyboard; Multi-objective optimization; Multi-start descent
1 The fact that there are no characters on the 1 key has a
historic reason: telephone numbers in the past would not be
dialed, but verbally told to the operator. Such ‘‘numbers’’
would usually start with letters, e.g., the first letters of the town
or street of the person called. When AT&T put the first dials
into operation (in 1919), the equipment could not differentiate
between the single pulse of a one being transmitted and the
1. Introduction

For many young people, SMS (short message
service) has become one of the primary modes of
communication. According to GSM Association,
a consortium of mobile phone operators, the more
than one billion GSM users in 205 countries
worldwide sent 45 billion messages in February
2004 and are estimated to send over half a trillion
messages in 2004 [2]. The SMS interface however,
i.e., the mobile phone keyboard, was not originally
0377-2217/$ - see front matter � 2005 Elsevier B.V. All rights reserv
doi:10.1016/j.ejor.2005.03.069

* Tel.: +32 3 220 40 49.
E-mail address: kenneth.sorensen@ua.ac.be
conceived for typing text, but for entering tele-
phone numbers. The distribution of the letters
over the 10 numeric keys, shown in Fig. 1, was
‘‘optimized’’ for easy reference.1 This alphabetic
ed.

sound of a phone hanging up, unless the phone was already in
‘‘dialing mode’’. As a result, when the first number dialed was a
1, the equipment would hang up. Therefore, no letters could be
assigned to the first key [1].

mailto:kenneth.sorensen@ua.ac.be

Fig. 1. The standard keyboard layout.

K. Sörensen / European Journal of Operational Research 179 (2007) 838–846 839
letter order is useful for typing American-style tele-
phone numbers, such as 1-800 FLOWERS or 1-
800 SAVEAPET, in which the number of charac-
ters typed is small. Each character corresponds
to the number of the key it is on, e.g., ‘‘typing’’
FLOWERS corresponds to dialing 3569377. On
the other hand, the combination 3569377 might
correspond to any other word that consists of a
letter on each of the pressed keys in the same
order. It is the responsibility of the telephone oper-
ator to ensure that no other ‘‘word’’ is issued that
corresponds to the same telephone number.

Messages transmitted by SMS do not corre-
spond to telephone numbers and ambiguities such
as the ones described above have to be avoided.
Two systems have been developed to form words
on a mobile phone keyboard. In the first genera-
tion of message typing, the first letter on a key cor-
responds to a single press, the second letter
corresponds to a double press, and so on. This
requires the user to press key 7 four times if an s

is required and is obviously a very inefficient way
to type even the smallest of texts.

The next generation of mobile phone key-
boards, and the main interest of this paper, uses
a word list to distinguish between words. Words
are formed by pressing the key corresponding to
each letter of the word once, thereby transforming
the word into a sequence of digits. The system then
searches the word list for words that correspond to
this digit sequence and—if at least one word is
found—displays the most frequent word. If the
user intends a different word than the one found
by the system, a special key (indicated with *)
can be used to switch between this word and the
other words that correspond to the digit sequence.
For example, to type the word ‘‘suppose’’, the user
would type keys 7877673. However, the word
‘‘purpose’’ also corresponds to this key combina-
tion, and is more frequent. Therefore, the system
will show the latter word and the user is required
to use the special key to switch words. An example
of such a technology is AOL�s T9� Text Input [9].

Given the fact that the letters on mobile phone
keyboards are no longer just used as memory aids,
i.e., to remember telephone numbers, but instead
are used to type relatively long messages, the ques-
tion arises whether the ergonomic qualities of the
keyboard cannot be improved. Some attempts have
been made in the past to improve the physical design
of the keyboard, but these do not seem to be able to
rival the standard design in terms of popularity. In
this paper, we use the default physical design (i.e.,
the 4 · 3 matrix shown in Fig. 1), but develop a
method to find a better placement of the letters on
the keyboard (we will refer to such a placement as
keymap). We will focus exclusively on the second-
generation input systems, that use a word list.

The keymaps obtained in this paper are
intended only for typing messages in the English
language. For different languages, however, the
same approach can be used with a different word
list. The keymaps that result from the same analy-
sis using, e.g., a French corpus are most likely not
the same as those obtained for English. This does
not constitute a serious problem as the ‘‘physical’’
keymap is usually a small piece of plastic that can
be removed and replaced, i.e., nationalization of
mobile phone keyboards is not an insurmountable
problem. This does not mean that a user will have
to switch keymaps when typing a message in a dif-
ferent language. The English language keymap can
still be used to type—say—French messages using
a French word list, it will only be suboptimal for
this language.

A second note is that an ‘‘optimized’’ keymap
can still be used to type American-style telephone
numbers. In this case, the input system can trans-
late the word typed into a telephone number by
remembering which letters are on which keys in
the standard keymap. That is, letter �A� should
be transformed into digit 2, whatever key it is on.

840 K. Sörensen / European Journal of Operational Research 179 (2007) 838–846
2. Literature review

To our knowledge, this is the first paper that
addresses this issue. Related research has focused
on finding a better typewriter keyboard layout. It
is widely believed that the standard QWERTY lay-
out—introduced by Christopher Sholes in 1873 for
the typewriters produced by E. Remington &
Son—was originally designed for slow typing as
this would prevent the mechanic parts of the typing
machine from getting stuck. It is similarly claimed
that the Dvorak keyboard is superior. Without
wishing to enter this discussion, we just mention
that both claims are disputed (see, e.g., [12]). The
assignment of letters to the keys of a keyboard
has been modeled as a quadratic assignment prob-
lem [3,11]. A recent approach uses an ant colony
optimization method to optimize a keyboard with
respect to several ergonomic objectives [5].

A more closely related problem [13] is—given a
finite word list—to find a mapping of a set of let-
ters to a set of integers to minimize the number
of ambiguities (i.e., words of integers that corre-
spond to more than one word in the word list).
The authors prove the NP hardness of this prob-
lem and develop a fast learning automaton solu-
tion method. The problem solved in this paper is
fundamentally different from our problem (and
therefore considerably less useful for the optimiza-
tion of SMS keymaps) in two important ways.
First, the problem solved in this paper considers
an ambiguity to be more important if the words
involved appear more frequently in the language.
Secondly, [13] only minimize ambiguity, whereas
we simultaneously minimize the total cost of
typing.

The problem discussed in this paper is a bi-
objective one and should be solved using a multi-
objective optimization technique. Given the diffi-
cult mathematical structure of the objective func-
tions, it is not very likely that an exact approach
will be able to determine the set of non-dominated
solutions. We therefore use a metaheuristic
approach and develop a multi-start descent algo-
rithm that uses a weight factor to determine the
direction of the search. Many multi-objective meta-
heuristics have been proposed, most of them based
on a single-objective metaheuristic such as simu-
lated annealing [4,14,15] and tabu search [7,8].
For a recent tutorial on evolutionary multi-objec-
tive metaheuristics, we refer to Zitzler et al. [16].
3. Problem description

This paper discusses how a better keyboard lay-
out can be found when using an SMS input system
that uses a word list. Essentially, the word list con-
tains a set of words, ordered by the frequency in
which these words appear in the language. As the
discussion in the introduction points out, typing
words on such an input system corresponds to
transforming these words into a sequence of digits
(integers in the range [2, 9]) (remember that key 1
does not contain any characters and that key 0 is
used as the space bar). As a given sequence of inte-
gers corresponds to many potential sequences of
characters, a word list is used to look up which
character sequences correspond to an existing
word. If at least one word corresponds to a given
integer sequence, the most frequent word is shown
on the screen. If this word is not the same as the ori-
ginal word intended by the user, a special key
allows him or her to cycle between all words that
correspond to the same sequence of integers.

A good keymap should have two properties.
First, the effort required to type an average mes-
sage should be as small as possible. A message is
usually typed using only one finger (usually the
thumb) and therefore this effort is determined by
the amount of thumb movement that is required.
Since the number of key-presses for a given word
is a constant regardless of the keymap, the amount
of movement is determined only by the way the
characters are laid out onto the keyboard. Charac-
ters that frequently occur in close proximity (such
as ‘‘th’’) should appear close together, preferably
on the same key. It is important that words that
occur frequently are easy to type, whereas this is
less important for very infrequent words. Sec-
ondly, as little as possible word clashes should
occur. A clash is defined as the fact that two or
more words in the word list correspond to the
same integer sequence. The absence of clashes is
more important for frequent words than for infre-
quent ones, but the frequency to take into account

K. Sörensen / European Journal of Operational Research 179 (2007) 838–846 841
is that of the second frequent word (and the third
frequent, fourth frequent, etc.) corresponding to
some integer sequence. Indeed, as the most fre-
quent word corresponding to a certain key combi-
nation is displayed, the clash goes unnoticed if this
was the intended word. On the default keymap, in
use on most mobile phones, some of the most fre-
quent words clash: ‘‘am’’ and ‘‘an’’, ‘‘if’’ and ‘‘he’’,
‘‘no’’ and ‘‘on’’.

The two objectives described in the previous
paragraph (typing effort and absence of clashes)
are contradicting. Whereas the first objective
forces as many letters as possible on the same
key, the second objective favors letters that often
occur together to be on different keys.

One could argue that cycling between words
that correspond to the same integer sequence is
done by pressing a key and can therefore be con-
sidered to be typing. However, we believe this
argument is flawed because typing and cycling
are fundamentally different operations. This can
be demonstrated by noting that typing words can
be done without looking at the screen, whereas
cycling between words cannot (unless the entire
word list is memorized). Also, the fact that the
input system does not come up with the intended
word is generally conceived as very annoying.

We now formalize these objectives by making a
number of assumptions and developing a mathe-
matical model of the problem.

3.1. Assumptions

1. The keyboard consists of eleven keys. Ten keys
are labeled 0 to 9. One key is labeled *.

2. 26 letters (a–z) need to be distributed over the
nine keys labeled 1 to 9. Each key can contain
any number of letters (even zero), but each let-
ter can occur only once.

3. The space symbol ? is on the key labeled 0 and
may not move.

4. One of the nine keys labeled 1 to 9 should
remain reserved for the special symbol (0). This
is necessary to create words that contain an
apostrophe (don�t, shouldn�t, you�re, etc.). It is
necessary that this symbol is on a separate key
because this key is also used for punctuation
marks (comma, full stop, colon, etc.).
5. A word is typed by pressing the key correspond-
ing to each of the letters of a word once, in the
order the letters appear in the word. This trans-
forms the word into a sequence of integers.

6. The key labeled * is used to cycle between
words that correspond to the same key
sequence. The position of this key is irrelevant.

7. A clash occurs when two or more words in the
word list correspond to the same integer
sequence. The severity of a clash is determined
by the frequency of the words that are not the
most frequent word corresponding to an integer
sequence.

8. Costs are associated with moving from key i to
key j. These costs are assumed to be constant
for a given pair (i, j).

9. To determine the cost of a word, it is assumed
that all words are preceded with and followed
by a space (?).

3.2. Mathematical formulation

Given the finite set of characters L, xi is the sub-
set of characters belonging to a set i. Without loss
of generality, we can assume that i 2 [1, m], where
m is the number of keys on the keyboard. A key-

map X = {xi} is a partition of the characters of
L over the keys. We require of X that

[m
i¼1

xi ¼ L ^ xi \ xj ¼ ; () i 6¼ j.

We define the (finite) word list W as the set of
words wj (j 2 [1, . . . , jWj]). The frequency of a
word wj is denoted as f(wj).

When a given word w consisting of the letter
sequence l1 l2 . . . ln is typed on the keyboard, the
result DX(w) is a sequence of digits d1 d2 . . . dn with
li 2 xdi . Of course, this result depends on the key-
map X.

For this specific case, L = {a, . . . , z, 0}, m = 9.
We additionally require that xi = { 0} () 0 2 xi,
i.e., the apostrophe should be alone on a key.

To calculate the total effort required to type an
average message, we introduce a matrix C = c(i, j)
with i, j 2 [0, m] that represents the costs of moving
between key i and key j. Key 0 is a ‘‘neutral’’ key

Table 1
Costs of moving from key in the column to key in the row

0 1 2 3 4 5 6 7 8 9

0 1 8 7 8 6 5 6 4 3 4
1 8 1 3 5 3 4 6 5 6 7
2 7 3 1 3 4 3 4 6 5 6
3 8 5 3 1 6 4 3 7 6 5
4 6 3 4 6 1 3 5 3 4 6
5 5 4 3 4 3 1 3 4 3 4

842 K. Sörensen / European Journal of Operational Research 179 (2007) 838–846
that represents the space bar. We define the cost of
typing word w on an input device with keymap X

as

bX ðwÞ ¼ cðd0; d1Þ þ
Xn�1

i¼1

cðdi; diþ1Þ þ cðdn; d0Þ; ð1Þ

with w = l1 l2 . . . ln and li 2 xdi .
And the total typing cost for a given keymap is

determined by the cost of typing every word in the
word list, weighted by word frequency:

ftðX Þ ¼
X
w2W

bX ðwÞf ðwÞ. ð2Þ

To calculate the ‘‘cost’’ of word clashes, we intro-
duce the function dX. dX(wi) is a binary function
that indicates whether, for a given word wi, a more
frequent word exists that corresponds to the same
key combination. Of course, this depends on the
keymap X:

dX ðwiÞ ¼

1 if 9wj 2 W j wj 6¼ wi

^ f ðwjÞ > f ðwiÞ
^ DX ðwjÞ ¼ DX ðwiÞ;

0 otherwise.

8>>><
>>>:

ð3Þ

For a given keymap X, the total cost of all clashes
now can be easily written as

fcðX Þ ¼
X
w2W

dX ðwÞf ðwÞ. ð4Þ

This is the sum of the frequencies of all words that
are not the most frequent word corresponding to
their integer sequence.

3.3. Practical calculations

To calculate both objective function values, a
list of the 2000 most common words from the
Brown corpus [6,10]2 is used. The Brown corpus
is a rather large (about one million words) collec-
tion of texts taken from several non-academic
domains. The absolute frequency (number of
occurrences) of the words in the Brown corpus is
also given. For example, the most frequent word
(‘‘the’’) occurs 69970 times.
2 Retrieved from http://www.edict.com.hk/textanalyser/.
The cost ft of typing can be easily computed by
calculating the value of formula (1) for each word
in the word list and multiplying the typing cost
with the frequency of each word. For large word
lists, this may require a significant amount of time.
It should be noted that the problem of minimizing
the typing cost alone corresponds to a quadratic
assignment problem. Using this result, a faster
way to calculate ft is to pre-process the word list
and create a square matrix that contains the fre-
quencies of all character pairs, i.e., the total num-
ber of times each character pair occurs in all words
combined, weighted with the frequency of the
words. Combined with the cost matrix C and the
keymap X, this matrix can be used to quickly cal-
culate the total typing cost.

The cost matrix C = c(i, j) used in the experi-
ments is given in Table 1.

The cost of word clashes (fc) is more difficult to
calculate and involves building a tree. In this tree,
the nodes represent keys. Nodes on the first level
represent keys that are used as the first letter of a
word, nodes on the second level represent keys
that are used at the second level of a word, etc.
A flag is added to each node that indicates whether
this node represents the final letter of a word. The
tree is built by adding each word in the word list to
it, in order of decreasing frequency. This is done
by first translating a word to its key combination
and then adding nodes on each required level if
they do not yet exist. The final node added for a
given word has its flag set to true. When the last
letter of the word corresponds to an existing node
with the final flag set to true, a word already exists
6 6 5 4 3 5 3 1 6 4 3
7 4 5 6 7 3 4 6 4 3 4
8 3 6 5 6 4 3 4 3 1 3
9 4 7 6 5 6 4 3 4 3 1

http://www.edict.com.hk/textanalyser/

K. Sörensen / European Journal of Operational Research 179 (2007) 838–846 843
that corresponds to the same key combination.
Since the words are added in order of decreasing
frequency, the word that was already added is
more frequent and is shown first. Therefore, the
frequency of the new (less frequent) word is added
to the clash cost.

Fig. 2 shows a tree built using the standard key-
map (Fig. 1) with words ‘‘the’’ (843), ‘‘to’’ (86),
‘‘free’’ (3733), ‘‘vote’’ (8683) and ‘‘does’’
(3637). Nodes with the flag set to true are depicted
as a rhombus, other nodes as a circle. When the
word ‘‘end’’ (363) is added to the tree, this does
not give rise to a clash, since the node 3 (below
the 6) is not a final node. Instead, adding this word
changes the status of this node to final. When add-
ing the word ‘‘ends’’ (3637) however, a clash is
detected as the status of the leftmost 7 in the tree
is final. Therefore, the frequency of the word
‘‘ends’’ is added to the clash cost.

Even when using a corpus of limited size (2000
words), the standard keymap features a large num-
ber of word clashes, including some of the most
frequently used words (e.g., if–he, no–on, me–of).
In some cases, three or more words correspond
to the same keyboard combination (e.g., box–
boy–any). The number and severity of clashes is
likely to increase when larger word lists are used.
Total typing cost of the standard keymap is
17,910,627. Clash cost of this keymap is 21,129.

We should note that the corpus used is most
likely not representative of the average SMS con-
versation. For example, the word ‘‘book’’ appears
more frequently than the word it clashes with
(‘‘cool’’). However, the analysis can easily be
Fig. 2. Detecting clashes.
repeated using a list compiled from a more repre-
sentative corpus. Moreover, this does not invali-
date the result that the standard keymap is not
optimal as words like ‘‘to’’, ‘‘on’’, ‘‘am’’, ‘‘an’’,
‘‘if’’, ‘‘he’’, etc. most probably appear frequently
in SMS conversation too.
4. A multi-start descent algorithm for the SMS

keymap optimization problem

A simple local search algorithm that is used to
solve the problem described in Section 3, is shown
in Algorithm 1. The algorithm starts from a ran-
dom solution and attempts to iteratively improve
this solution by putting a character on a different
key. Given the fact that some characters appear
much more frequently than others, it can be
argued that the position of the most frequent let-
ters is more important than that of less frequent
letters. The algorithm therefore uses a list of char-
acters, sorted in order of decreasing frequency.
For the Brown corpus, this list corresponds to eta-

oinsrhldcumfpgwybvkxjqz.3 Let /(i) denote the ith
most frequent character.

The algorithm restarts from nmax random solu-
tions and improves them using a local search pro-
cedure. The apostrophe is not moved during a
local search iteration and therefore remains on
the key it was in the initial solution.

The local search procedure proceeds by first
attempting to find a better position for the most
frequent character (e). This is done by temporarily
putting this character on each of the seven remain-
ing keys and calculating the objective function
value f. If the solution cannot be improved by
moving the most frequent character to a better
position, the search continues with the second-
most frequent character, then the third-most fre-
quent, etc. When an improved solution is found
by moving a character to another key, this move
is made and the search goes back to the most fre-
quent character, then the second-most frequent,
etc. The local search ends when the keymap cannot
be improved by moving the least-frequent letter.
3 http://www.bckelk.uklinux.net/words/etaoin.html

http://www.bckelk.uklinux.net/words/etaoin.html

844 K. Sörensen / European Journal of Operational Research 179 (2007) 838–846
The objective function value f for a keymap X is
determined by a weighted average of normalized
typing and clash costs. Normalization of both
costs is done by dividing the typing and clash costs
of a given keymap by the typing and clash costs of
the standard keymap Xs. Normalization is neces-
sary because typing and clash costs are of different
orders of magnitude.

f ðX Þ ¼ a
ftðX Þ
ftðX sÞ

þ ð1� aÞ fcðX Þ
fcðX sÞ

. ð5Þ

The descent method is reinitialized nmax times with
different random initial solutions. At the ith re-
start, the value of a is set to i/nmax. Experiments
show that this procedure generates a good approx-
imation of the efficient frontier.

Algorithm 1. Multi-start descent for the SMS
keymap optimization problem

for i 0 to nmax do

Generate a random solution X ;

a i=nmax;

j 1;

repeat

Put /ðjÞ on the key that yields the highest f ðX Þ;
If improvement found then

j 1;b
j jþ1;

���������
until j¼ 26;

6666666666666666664
5. Results

All programming was done in pascal, and com-
piled using the freepascal4 compiler. The code is
available from the author upon request.

We set the value of nmax to 10,000, hence 10,001
solutions are generated with values of a equally
distributed between 0 and 1. Total running time
was about 300 minutes on an AMD Athlon 1100
processor running Linux.

If a � 1, solutions tend to ‘‘degenerate’’, i.e.,
only the typing cost is taken into account and all
4 http://www.freepascal.org
letters end up on one or two keys, resulting in very
large clash cost. The reverse is not true, i.e., if
a � 0, solutions are still reasonable. The reason
for this is that the clash cost objective has the ten-
dency to distribute the characters evenly across the
keys.

Fig. 3 shows 1000 solutions generated with the
optimization procedure. The solutions that have
a clash cost fc > 30,000 can be regarded as ‘‘degen-
erated’’ solutions because most characters are on a
single key.

Fig. 4 shows only the efficient solutions from a
set of 10,000 solutions generated using the multi-
start descent procedure. Only the solutions having
fc < 30,000 are shown. The standard keymap is
also depicted. As can be seen, many solutions
can be found that dominate the standard keymap.
These solutions are better both in terms of clash
costs and typing costs and should therefore be con-
siderably easier to use than the standard keyboard.

5.1. Interpretation of the results

Analysis of the set of efficient solutions with
fc < 30,000 reveals some interesting properties
and guidelines for the development of SMS
keymaps.

• All vowels should preferably be on different
keys. This is a characteristic of 82% of all effi-
cient solutions.
Fig. 3. Typing and clash cost of 1000 solutions and the
standard keymap.

http://www.freepascal.org

Fig. 4. Typing and clash cost of the efficient solutions and the
standard keymap.

Fig. 5. The keymap with the lowest clash cost.

Fig. 6. An efficient keymap.

K. Sörensen / European Journal of Operational Research 179 (2007) 838–846 845
• Some characters should be grouped. For exam-
ple, characters d and f appear on the same key
in 51% of the nondominated solutions. Other
good combinations include os, egw, ijkpr, ht,
bnx, clquvy and amz.

• Over 90% of all efficient solutions use all keys.
Some solutions (less than 10%) have one empty
key, but these are all solutions with very low
typing costs and relatively high clash costs.

• The number of characters per key ranges
between 0 and 9. About 25% of all keys in all
nondominated solutions have 2 characters,
another 25% has three characters. Keys with 1
and 4 characters constitute 17% each. Keys with
more than five characters take up 16%. We can
conclude that there is no tendency to assign an
equal number of characters to each key, but
there is no tendency to put an extremely large
number of characters on a single key either.

5.2. Some examples

As an example, we show in Fig. 5 the keymap
that has the lowest clash cost. Clash cost for this
keymap is 2920, a factor 7 improvement over the
21,129 of the standard keymap. It is interesting
to note that this keymap has a key with 6 and a
key with 5 characters on it.

An example of an efficient keymap that bal-
ances clash costs and typing costs is given in
Fig. 6. Typing cost for this keymap is 14,787,342,
clash cost is 5043.
6. Conclusions and future research

In this paper, we have discussed the need for
efficient keymaps to type short messages on a
mobile phone. We have formulated this as a com-
binatorial optimization problem with two objec-
tives: typing costs and clash costs. For a given
keymap, typing costs were defined as the total
effort to type all words in the word list, weighted
by the frequencies of the words in the corpus.
Clash costs were defined as the sum of the frequen-
cies of all words that are not the most frequent
word corresponding to their integer sequence.
We implemented a multi-start local search algo-
rithm for this multi-objective problem and showed
how solutions could be found that dominate (i.e.,
perform better on both objectives than) the stan-
dard keymap, in use on almost all mobile phones.

Further research should focus on testing the
new keymaps, actually implementing them on a

846 K. Sörensen / European Journal of Operational Research 179 (2007) 838–846
mobile phone keyboard and finding out to which
extent they improve the speed and accuracy of typ-
ing short messages on a mobile phone keyboard.
References

[1] The Almanac, Why do letters as well as numbers appear on
telephone buttons—and why do the letters usually begin on
the second button? Available from: <http://www.theatlan-
tic.com/issues/96sep/9609am/9609am.htm>.

[2] GSM Association, GSM Statistics, 2004. Available from:
<http://www.gsmworld.com/news/statistics/>.

[3] R.E. Burkard, J. Offermann, Entwurf von schreibmaschin-
entastaturen mittels quadratischer zuordnungsprobleme,
Zeitschrift fur Operations Research 21 (1977) B121–B132.

[4] P. Czyzak, A. Jaszkiewicz, Pareto simulated annealing—A
metaheuristic technique for multiple objective combinato-
rial optimization, Journal of Multicriteria Decision Anal-
ysis 7 (1998) 34–37.

[5] J. Eggers, D. Feillet, S. Kehl, M.O. Wagner, B. Yannou,
Optimization of the keyboard arrangement problem using
an Ant Colony Algorithm, European Journal of Opera-
tional Research 148 (3) (2003) 672–686.

[6] W.N. Francis, H. Kucera, Frequency Analysis of English
Usage, Houghton Mifflin, Boston, 1982.

[7] X. Gandibleux, N. Mezdaoui, A. Fréville, A multiobjective
tabu search procedure to solve combinatorial optimization
problems, in: R. Caballero, F. Ruiz, R. Steuer (Eds.),
Advances in Multiple Objective and Goal Programming,
Lecture Notes in Economics and Mathematical Systems,
vol. 455, Springer, Berlin, 1997, pp. 291–300.
[8] M.P. Hansen, Tabu search for multiobjective optimization:
Mots, in: 13th International Conference on Multiple
Criteria Decision-Making, Cape Town, South Africa,
1997, pp. 6–10.

[9] AOL T9� Text Input. Available from: <http://
www.t9.com>.

[10] H. Kucera, W.N. Francis, Computational Analysis of
Present-day American English, Brown University Press,
Providence, 1967.

[11] S.P. Ladany, A model for optimal design of keyboards,
Computers & Operations Research 2 (1) (1975) 55–59.

[12] S.J. Liebowitz, S.E. Margolis, The fable of the keys,
Journal of Law and Economics 23 (1990) 1–26.

[13] B.J. Oommen, R.S. Valiveti, J. Zgierski, A fast learning
automaton solution to the keyboard optimization problem,
in: Proceedings of the Third International Conference on
Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, ACM Press, New York,
USA, 1990, pp. 981–990.

[14] P. Serafini, Simulated annealing for multi objective opti-
mization problems, in: 10th International Conference on
MCDM Proceedings, Taipei, Taiwan, 1992, pp. 87–96.

[15] E.L.B. Ulungu, J. Teghem, Ph. Fortemps, Heuristics for
multi-objective combinatorial optimization problems by
simulated annealing, in: J. Gu, G.C.Q. Wei, Sh. Wang
(Eds.), MCDM: Theory and Applications, SCI-TECH
Information Services, 1995, pp. 228–238.

[16] E. Zitzler, M. Laumanns, S. Bleuler, A tutorial on
evolutionary multiobjective optimization, in: X. Gandib-
leux, M. Sevaux, K. Sörensen, V. T�kindt (Eds.), Meta-
heuristics for Multiobjective Optimisation, Lecture Notes
in Economics and Mathematical Systems, vol. 535,
Springer, Berlin, 2004, pp. 3–37.

http://www.theatlantic.com/issues/96sep/9609am/9609am.htm
http://www.theatlantic.com/issues/96sep/9609am/9609am.htm
http://www.gsmworld.com/news/statistics/
http://www.t9.com
http://www.t9.com

	Multi-objective optimization of mobile phone keymaps for typing messages using a word list
	Introduction
	Literature review
	Problem description
	Assumptions
	Mathematical formulation
	Practical calculations

	A multi-start descent algorithm for the SMS keymap optimization problem
	Results
	Interpretation of the results
	Some examples

	Conclusions and future research
	References

