An Iterated Local Search for the Vehicle Routing Problem with Backhauls

Daniel Palhazi Cuervo
Doctoral Day - Antwerp, November 23rd 2011
Outline

- The Vehicle Routing Problem (VRP)
- The Vehicle Routing Problem with Backhauls (VRPB)
- Heuristic algorithms - Metaheuristics
 - Local Search (LS)
 - Iterated Local Search (ILS)
- Implementation details
- Computational experiments
- ILS vs. The state of the art algorithms
- Conclusions
Vehicle Routing Problem

Elements:

- A central depot
- A set of customers that request goods from the depot
- A set of identical vehicles with a fixed capacity

Idea: Define the route for each vehicle in order to serve every customer
Vehicle Routing Problem

Constraints:
- Every route starts and finishes at the depot
- Every customer is visited exactly one time
- The amount of goods transported in each route cannot exceed the vehicle capacity

Objective: Minimize the distance traveled by the vehicles
Vehicle Routing Problem with Backhauls

Two types of customers:

- **Consumers (linehauls):** request goods from the depot
- **Suppliers (backhauls):** send goods back to the depot
Vehicle Routing Problem with Backhauls

Constraints for every route:

▶ The consumers must be served before the suppliers
▶ The load of goods sent to the consumers and the load of goods received from the suppliers must not separately exceed the capacity of the vehicle
Vehicle Routing Problem with Backhauls

Motivation:

- **Main idea:** take advantage of the available capacity in the vehicles during the trip back to the depot

- **Principal assumption:** the rearrangement of the load in the delivery points is not possible or is too expensive
Heuristic algorithms - Metaheuristics

- **Limitation of exact algorithms:** cannot be used to solve real-life problems (too long execution times)
- **Alternative:** Heuristic algorithms (Metaheuristics)
- **Feature:** Obtain very good solutions in short execution times
- **Drawback:** The obtained solution cannot be proven to be optimal
Local Search

- Iteratively explores adjacent portions of the solution space

Pseudo code:

1. Build an initial solution
2. Generate a set of neighboring solutions as a result of applying different local changes to the current solution
3. Move to a neighbor solution with a better value of the cost function and continue the exploration
Local Search
Iterated Local Search

- **Main drawback of Local Search:** It gets easily stuck in local optimum solutions
- **Intuitive strategy:** apply Local Search several times starting from different initial solutions (random sampling)
- **Assumption:** Better solutions are probably found in the surrounding space of good solutions, but they are not reachable by the local search.
- **Better strategy:** when a local optimum solution is found, randomly apply a perturbation operator and apply Local Search.
Iterated Local Search
Implementation details

- Three neighborhood operators: relocate, exchange and crossover
- Efficient calculation of the neighborhood in each iteration.
 - Benefit: Drastic reduction of the execution time
 - Drawback: More complex implementation and lost of modularity in the code
- Infeasible solutions (capacity constraint) are taken into account during the first stages of the algorithm and are handled by the penalization of the objective function.
Computational experiments

- Two sets of problems:
 - **GJB**: 62 instances, proposed by Goetschalckx and Jabobs-Blecha
 - **TV**: 33 instances, proposed by Toth and Vigo
- 15 runs of the algorithm for each instance
- Computer: 2.13GHz Intel Core 2 Duo P7450
ILS vs. The state of the art algorithms

Algorithms compared:

- **BTS**: Brandão’s Tabu Search
- **LNS**: Røpke and Pisinger’s Large Neighbourhood Search
- **RTS-AMP**: Wassan’s Reactive Adaptative Memory Programming Search
- **MACS**: Gajpal and Abad’s Multi-ant Colony System
- **ILS**: proposed Iterated Local Search
ILS vs. The state of the art algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Number of best solutions found</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTS</td>
<td>35/37</td>
</tr>
<tr>
<td>LNS</td>
<td>50</td>
</tr>
<tr>
<td>RTS-AMP</td>
<td>40</td>
</tr>
<tr>
<td>MACS</td>
<td>50</td>
</tr>
<tr>
<td>ILS</td>
<td>55</td>
</tr>
</tbody>
</table>

Set GJB.
Set TV.
ILS vs. The state of the art algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Average scaled execution time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTS</td>
<td></td>
</tr>
<tr>
<td>LNS</td>
<td></td>
</tr>
<tr>
<td>RTS-AMP Algorithm</td>
<td></td>
</tr>
<tr>
<td>MACS</td>
<td></td>
</tr>
<tr>
<td>ILS</td>
<td></td>
</tr>
</tbody>
</table>

Set GJB.
Set TV.
Conclusions

What we propose:
A simple and competitive algorithm to solve the Vehicle Routing Problem with Backhauls

What we learned:
Allowing the Local Search to consider infeasible solutions in the early stages, can be helpful to find valuable information about the global optimum solution in fewer iterations

Future work:
- Extend this algorithm in order to solve other variants of VRP
- Find efficient mechanisms to handle the violation of other constraints through the penalization of the objective function