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» Understand the relation between machine learning and
creativity, applied to music
— Generate new musical structures based on learned models

= New sampling method VNS applied to a controlled music
generation problem
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Computer aided composition (CAC)

Composing music = combinatorial optimization problem

» Music — combination of notes

» "“Good” music — fits a style as well as possible

» Formalized and quantified “rules” of a style — objective
function
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5th species counterpoint

» Counterpoint & Cantus firmus
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» Polyphonic baroque music

» Inspired Bach, Haydn,. ..

» One of the most formally defined musical styles
— Rules written by Fux in 1725
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Quantifying musical quality using rules

Examples of rules:
» Each large leap should be followed by stepwise motion in the
opposite direction

» Half notes should always be consonant on the first beat, unless
they are suspended and continued stepwise and downward

» All perfect intervals should be approached by contrary or
oblique motion

— 19 vertical and 19 horizontal subscores between 0 and 1
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Quantifying musical quality using rules

19
fer(s) Z a;.subscore_cf! (s) (1)
=0
horizontal aspect
19 19
fep(s) Z a;.subscore_cp (s) + Z bj.subscore}/(s) (2)
=0 7=0
horizon;ar| aspect vertical aspect
f(s) = fer(s) + fep(s) (3)
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Variable Neigborhood Search

> Local search with 3 neighborhoods

» Selection

» Steepest descent
» Based on adaptive score f%(s)

N; Name Description

Ny, Swap Swap two notes
N, Changel Change one note
N,  Change2 Change two notes
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Variable Neigborhood Search

Excluded framents

» Tabu list
» Infeasible

v

Perturbation

v

» Change r% of the notes randomly

v

Adaptive weights mechanism

v

Update best solution Spest, based on original score f(spest)
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Results

» Example of a generated fragment with score 0.556776.
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Machine learning

» Specifying complex objective function by hand
+

» Automatically generate objective function
— Learn from a corpus

» To evaluate this:
— First species: optimal solution known

How does VNS perform compared to Random Walk and Gibbs
Sampling?
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1st species counterpoint
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— Represented as a sequence of dyads
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Vertical viewpoints method

» Horizontal & vertical aspects
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> 3 linked features per dyad: gt e lo 151
» Two pitch class intervals between 13
the two melodic lines o X I T o
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» Pitch class interval within the — —— ! i i

dyad 2
> 7(bla) = [5,2,3]

» Dyad sequence transformed in abstract feature sequences
(Sufficiently abstract to gather statistics in a corpus)

— First order Markov model of abstract features
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Deriving dyad TM from a viewpoint model

Let v = 7(bla) be the feature assigned by a viewpoint 7 to dyad b,
in the context of preceding dyad a

P(bla) = P(b,v]a) since v is determined by b and a
— P(b,v,a)/P(a)
= P(v) x P(a|v) x P(bla,v)/P(a) chain rule
= P(v) x P(a,v)/P(v) x P(bla,v)/P(a)
= P(bla,v) x P(a,v)/P(a)
= P(bla,v) x P(a) x ( ) X Cap/P(a) ass. indep. of a and v
= P(bla,v) x P(v) x C,
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Quality of a solution

Probability of a sequence with respect to the model:

l

P(s) = [ Pleilei-1)

1=2

Cross-entropy (to be minimised):

Zlog (eilei—1))

For all dyads e, ...¢;.
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Experimental Setup

v

1000 pieces generated by VNS with rules — training

v

Fragment with 64 dyads

Fixed cantus firmus
— 1151 total combinations

First dyad fixed to [60]

v

v

48

v

48

—

Last two dyads fixed to [gg} and [60]
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Experimental setup

» 3 Methods
» VNS
» Random Walk
» Gibbs Sampling
» Complexity: number of TM lookups
» 10 runs for each method
» Stop criteria: optimum found or 30 x 10° TM lookups
» VNS TM lookups = 4 * number of moves (overestimated)
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Random Walk

v

Start with initial fixed dyad.
Repeat for 1 to I:

» Select next dyad e; with probability p(e;le; — 1)
> If no next dyad with non-zero probability: dead end

v

Several iterations

v

v

On each iteration: solution stored if it is the best so far
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Gibbs Sampling

> Repeat:

» Select a non-fixed dyad
Consider all possible permitted dyads at that position
Compute the score of each modified piece
Construct probability distribution over these scores
Select a new piece based on this distribution

vV vy VvYyy

» Several iterations

» On each iteration: solution stored if it is the best so far
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VNS vs Random Walk & Gibbs Sampling
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— VNS: f(s)°P! found after an average of 15.8 x 105 TM lookups
— GS & RW: optimum not found in any of the iterations



VNS vs Random Walk & Gibbs Sampling
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Conclusion

The proposed VNS is a valid and flexible sampling method that
outperforms both Random Walk and Gibbs Sampling using an
objective function created by machine learning.
Future research:

» Multiple viewpoints

» More complex music, e.g. fifth species counterpoint using
contrapuntal patterns approach of Conklin & Bergeron (2010).

» Learning on “real” data
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