

First species counterpoint generation with VNS and vertical viewpoints

D. Herremans¹, K. Sörensen¹, D. Conklin²

 1 University of Antwerp 2 University of the Basque Country & IKERBASQUE

DMRN+8, London

Overview

Generating counterpoint music

Counterpoint

Variable Neigborhood Search How it works Experiments & Results

Machine Learning Markov Model (Vertical Viewpoints) VNS vs Random Walk & Gibbs Sampling Results

Conclusion

Acknowledgements

 Lrn2Cre8: project funded by the European Commission Framework Programme 7

- Consortium of 6 partners from 5 countries
- Understand the relation between machine learning and creativity, applied to music

ightarrow Generate new musical structures based on learned models

 \Rightarrow New sampling method VNS applied to a controlled music generation problem

Computer aided composition (CAC)

Composing music = combinatorial optimization problem

- \blacktriangleright Music \rightarrow combination of notes
- \blacktriangleright "Good" music \rightarrow fits a style as well as possible
- \blacktriangleright Formalized and quantified "rules" of a style \rightarrow objective function

5th species counterpoint

Counterpoint & Cantus firmus

- Polyphonic baroque music
- Inspired Bach, Haydn,...
- ► One of the most formally defined musical styles → Rules written by Fux in 1725

Quantifying musical quality using rules

Examples of rules:

- Each large leap should be followed by stepwise motion in the opposite direction
- Half notes should always be consonant on the first beat, unless they are suspended and continued stepwise and downward
- All perfect intervals should be approached by contrary or oblique motion
- \rightarrow 19 vertical and 19 horizontal subscores between 0 and 1

Quantifying musical quality using rules

$$f_{cf}(s) = \sum_{i=0}^{19} a_i.\text{subscore}_cf_i^H(s)$$
(1)

$$f_{cp}(s) = \sum_{i=0}^{19} a_i.\text{subscore}_cp_i^H(s) + \sum_{j=0}^{19} b_j.\text{subscore}_j^V(s)$$
(2)

$$f_{cp}(s) = f_{cf}(s) + f_{cp}(s)$$
(3)

Variable Neigborhood Search

Local search with 3 neighborhoods

- Selection
 - Steepest descent
 - Based on adaptive score $f^a(s)$

N_i	Name	Description
N_{sw}	Swap	Swap two notes
N_{c1}	Change1	Change one note
N_{c2}	Change2	Change two notes

Variable Neigborhood Search

Excluded framents

- Tabu list
- Infeasible
- Perturbation
 - ► Change r% of the notes randomly
- Adaptive weights mechanism
- Update best solution s_{best} , based on original score $f(s_{\text{best}})$

Results

• Example of a generated fragment with score 0.556776.

Machine learning

- Specifying complex objective function by hand
- Automatically generate objective function
 → Learn from a corpus
- To evaluate this:
 - \rightarrow First species: optimal solution known

How does VNS perform compared to Random Walk and Gibbs Sampling?

1st species counterpoint

 \rightarrow Represented as a sequence of dyads

 $\begin{bmatrix} 60\\48 \end{bmatrix} \begin{bmatrix} 65\\50 \end{bmatrix} \begin{bmatrix} 64\\52 \end{bmatrix} \begin{bmatrix} 62\\55 \end{bmatrix} \begin{bmatrix} 60\\57 \end{bmatrix} \begin{bmatrix} 64\\55 \end{bmatrix} \dots$

Vertical viewpoints method

- ► Horizontal & vertical aspects → linked
- 3 linked features per dyad:
 - Two pitch class intervals between the two melodic lines
 - Pitch class interval within the dyad
 - ▶ $\tau(b|a) = [5, 2, 3]$

- Dyad sequence transformed in abstract feature sequences (Sufficiently abstract to gather statistics in a corpus)
 - \rightarrow First order Markov model of abstract features

Deriving dyad TM from a viewpoint model

Let $v=\tau(b|a)$ be the feature assigned by a viewpoint τ to dyad b, in the context of preceding dyad a

$$\begin{split} P(b|a) &= P(b, v|a) & \text{since } v \text{ is determined by } b \text{ and } a \\ &= P(b, v, a) / P(a) \\ &= P(v) \times P(a|v) \times P(b|a, v) / P(a) & \text{chain rule} \\ &= P(v) \times P(a, v) / P(v) \times P(b|a, v) / P(a) \\ &= P(b|a, v) \times P(a, v) / P(a) \\ &= P(b|a, v) \times P(a) \times P(v) \times C_{ab} / P(a) & \text{ass. indep. of } a \text{ and } v \\ &= P(b|a, v) \times P(v) \times C_{ab} \end{split}$$

Quality of a solution

Probability of a sequence with respect to the model:

$$P(s) = \prod_{i=2}^{l} P(e_i|e_{i-1})$$

Cross-entropy (to be minimised):

$$f(s) = -\frac{1}{l} \sum_{i=2}^{l} \log(P(e_i | e_{i-1}))$$

For all dyads $e_1, \ldots e_l$.

Experimental Setup

- \blacktriangleright 1000 pieces generated by VNS with rules \rightarrow training
- Fragment with 64 dyads
- Fixed cantus firmus $\rightarrow 11^{61}$ total combinations
- First dyad fixed to $\begin{bmatrix} 60\\48 \end{bmatrix}$

 \blacktriangleright Last two dyads fixed to $\begin{bmatrix} 59 \\ 50 \end{bmatrix}$ ar

and
$$\begin{bmatrix} 60\\48 \end{bmatrix}$$

Experimental setup

3 Methods

- VNS
- Random Walk
- Gibbs Sampling
- Complexity: number of TM lookups
- 10 runs for each method
- > Stop criteria: optimum found or 30×10^6 TM lookups
- VNS TM lookups = 4 * number of moves (overestimated)

Random Walk

- Start with initial fixed dyad.
- ▶ Repeat for 1 to *l*:
 - Select next dyad e_i with probability $p(e_i|e_i 1)$
 - If no next dyad with non-zero probability: dead end
- Several iterations
- On each iteration: solution stored if it is the best so far

Gibbs Sampling

Repeat:

- Select a non-fixed dyad
- Consider all possible permitted dyads at that position
- Compute the score of each modified piece
- Construct probability distribution over these scores
- Select a new piece based on this distribution
- Several iterations
- On each iteration: solution stored if it is the best so far

VNS vs Random Walk & Gibbs Sampling

 \rightarrow VNS: $f(s)^{opt}$ found after an average of 15.8×10^{6} TM lookups \rightarrow GS & RW: optimum not found in any of the iterations

VNS vs Random Walk & Gibbs Sampling

Conclusion

The proposed VNS is a valid and flexible sampling method that outperforms both Random Walk and Gibbs Sampling using an objective function created by machine learning.

Future research:

- Multiple viewpoints
- More complex music, e.g. fifth species counterpoint using contrapuntal patterns approach of Conklin & Bergeron (2010).
- Learning on "real" data

First species counterpoint generation with VNS and vertical viewpoints

D. Herremans¹, K. Sörensen¹, D. Conklin²

 1 University of Antwerp 2 University of the Basque Country & IKERBASQUE

DMRN+8, London

