A variable neighbourhood search
algorithm to generate first species
counterpoint musical scores

Dorien Herremans
23.11.11 - Doctoral Day

—

G

Overview

Computer aided composing (CAC)
Variable Neigborhood Search
Experiments & Results
Implementation

Conclusion

—

G

Computer aided composing (CAC)

Composing music = combinatorial optimization problem

» Music — combination of notes
» Good music — fits a style as well as possible
» Formalized and quantified “rules” of a style — objective

function

—

1st species counterpoint

» Counterpoint & Cantus firmus

e o1
)

o

/o —1

K 3

» Represented as 2 vectors with midi values

[60 65 64 62 60 64 65 67 67 69 62 64 64 60 59 60]

— Formal rules written by Fux in 1725

G

Quantifying musical quality

Examples of rules:
» Each large leap should be followed by stepwise motion in the
opposite direction
» Only consonant intervals are allowed
» The climax should be melodically consonant with the tonic
» All perfect intervals should be approached by contrary or

oblique motion

— 15 vertical and 18 horizontal subscores between 0 and 1

—

Quantifying musical quality

fcr(s) = Z a;.subscorel (s) (1)
Zhorizontal aspect CF
fep(s Z a;.subscore! Z bj subscore (2)
horlzontar;spect cp vertical aspect CP
f(s) = fer(s) + fep(s) (3)

—

G

Optimization methods

» Exact methods

» The best solution
» E.g. exhaustive enumeration

» 16 notes with 14 different notes — 1416 possibilities
— exponential

» Heuristic methods

» A good solution
» 'Rules of thumb’
» Fast

— Metaheuristics

—

Metaheuristics

Framework that provides guidelines for the development of problem
specific solution methods

— Variable Neighborhood Search

—

G

Variable Neigborhood Search (VNS)

1. Cantus firmus

2. Counterpoint

— Same algorithm, different objective function

—

G

Variable Neigborhood Search (VNS)

» Local search: make small changes (moves) to a solution to go
from one solution to the next.

> Neighborhood N (x): set of all solutions that can be reached
from a given solution by move x

N; Name Description

N1 Swap Swap two notes
N5 Changel Change one note
N3 Change2 Change two notes

» Choose the best solution from the neighborhood

—

G

Variable neighbourhood search

» Start from an initial feasible musical fragment

G

Variable neighbourhood search

> lIterate over the neighborhoods

G

Variable neighbourhood search

» perturbation: change % of the notes randomly

G

Components of the algorithm

v

Local search with 3 neighborhoods

v

Perturbation: escape from local optima

Tabu list: avoid circles

v

v

Adaptive weights mechanism
— Increase weight of subscore with highest value
— Keeps the search in the right direction

—

Update s best

Optimum
found?

Generate random s

»lg

>

Y

A

...... LS Changel NH

v

"""" LS Change2 NH

Yes
Current s
<
satA?

Change r% of
notes randomly

4

Update
adaptive weights

Max iters
reached?

Iters ++

G

Experiments & Results

» Full factorial experiment, n= 4068

Parameter Values Nr. of levels
N1 - Swap on with tt,=0, tt;=1, tt;=3, off 4

Ny - Changel on with #t5=0, ttg—* tto= % off

N3 - Change2 on with tt3= 0 ttg— ttg= % off

Random move i changed changed off
Adaptive weights on, off

Max. iterations 10, 50, 100

Length of music 16, 32, 48, 64 notes

—

AWM WS

G

Experiments & Results

» Multi-Way ANOVA model with interaction effects, using R
» R? =0.9122

Parameter Df Sum Sq Mean Sq F value Prob (> F)
N, 1 32399 32399 1173.4292 < 2.2 16 %
Ny 1 723.12 723.12 2618.9755 < 2.2¢716 *
N3 1 179421 179421 6498.1957 < 2.2¢ 16 *
randsize 2 144136 720.68 2610.1349 < 2.2¢716 *
iters 2 61.69 30.84 111.7095 < 2.2¢716 *
tty 2 0.76 0.38 1.3815 0.2513093
tto 2 4.17 2.09 75519 0.0005321 *
tts 2 104.13 52.07 188.5756 < 2.2¢716 *
adj. weights 1 5.13 5.13 18.5697 1.675e~% *

—

G

Experiments & Results

» Mean plot for size of random jump

+ 150
9 I
o 1100 @2
é o
[9p] 1+ g
150 ~
0 \ ! ! 0

0 10 20

Random size (in %)

—

G

Optimal parameter settings

Parameter Value

N; - Swap on with t¢;=0
Ng - Changel on with ttQZ%
N3 - Change2 on with tth%
Random move % changed
Adaptive weights on

Max. number of iterations 100

Length of music 64 notes

—

G

Implementation

v

C++ — VNS
JavaScript using the QtScript engine — MuseScore plugin

v

v

Input:
» Key (i.e., G# minor)
» Weights for each subscores
» VNS parameters

Result: MusicXML

—

v

Flle Edt Create Notes

I=@& W

Implementation

MuseScore: counterpsintt
Layout Style Display Plugins Opfimuse Help

1) @1 @ 100% v | [Generate Ganlus Firmus

Generate Counterpoint

concertricn N § 4 A S Jomdd g -i

Paleties o
Grace Notes
Drums
Clefs
Key Signatures

Time Signatures
ar lines
Lines
Arpagaio 8 Glissando
Breath & Pauses
Brackets

Lo e e Mo e e e e e

counterpointt [

Generated Music
Optibuse

5
Accidentals
Dynamics
Fingering
Note Heads

Tremolo

Repeats
Breaks & Spacer
Beam Properties

Symbols

|

o Mo e e e Mo e Hle e

50 4

Results

» Example of counterpoint with score of 0.371394

o

I @ —

I @ —

rau

/o 1

3

G

Conclusion

The first species counterpoint rules have been quantified and an

efficient algorithm has been implemented to compose this style of
music

Future research:

» More complex music:

» Different styles
» Rythmic component
» More parts

» Analyse DB of existing music and extract composer
characteristics

» Compare the algorithm to others, e.g. genetic algorithm

A variable neighbourhood search
algorithm to generate first species
counterpoint musical scores

Dorien Herremans
23.11.11 - Doctoral Day

—

	Computer aided composing (CAC)
	Variable Neigborhood Search
	Experiments & Results
	Implementation
	Conclusion

