
A variable neighbourhood search
algorithm to generate first species

counterpoint musical scores
Dorien Herremans

23.11.11 - Doctoral Day

Overview

Computer aided composing (CAC)

Variable Neigborhood Search

Experiments & Results

Implementation

Conclusion

Computer aided composing (CAC)

Composing music = combinatorial optimization problem

I Music → combination of notes

I Good music → fits a style as well as possible

I Formalized and quantified “rules” of a style → objective
function

1st species counterpoint

I Counterpoint & Cantus firmus


 

 
 
 

44 
44 

I Represented as 2 vectors with midi values
[60 65 64 62 60 64 65 67 67 69 62 64 64 60 59 60]

→ Formal rules written by Fux in 1725

Quantifying musical quality

Examples of rules:

I Each large leap should be followed by stepwise motion in the
opposite direction

I Only consonant intervals are allowed

I The climax should be melodically consonant with the tonic

I All perfect intervals should be approached by contrary or
oblique motion

→ 15 vertical and 18 horizontal subscores between 0 and 1

Quantifying musical quality

fCF(s) =
∑
i

ai.subscoreHi (s)︸ ︷︷ ︸
horizontal aspect CF

(1)

fCP(s) =
∑
i

ai.subscoreHi (s)︸ ︷︷ ︸
horizontal aspect CP

+
∑
j

bj .subscoreVj (s)︸ ︷︷ ︸
vertical aspect CP

(2)

f(s) = fCF(s) + fCP(s) (3)

Optimization methods

I Exact methods
I The best solution
I E.g. exhaustive enumeration
I 16 notes with 14 different notes → 1416 possibilities

→ exponential

I Heuristic methods
I A good solution
I ’Rules of thumb’
I Fast

→ Metaheuristics

Metaheuristics

Framework that provides guidelines for the development of problem
specific solution methods

→ Variable Neighborhood Search

Variable Neigborhood Search (VNS)

1. Cantus firmus

2. Counterpoint

→ Same algorithm, different objective function

Variable Neigborhood Search (VNS)

I Local search: make small changes (moves) to a solution to go
from one solution to the next.

I Neighborhood N(x): set of all solutions that can be reached
from a given solution by move x

Ni Name Description

N1 Swap Swap two notes
N2 Change1 Change one note
N3 Change2 Change two notes

I Choose the best solution from the neighborhood

Variable neighbourhood search

I Start from an initial feasible musical fragment

Variable neighbourhood search

I Iterate over the neighborhoods

Variable neighbourhood search

I perturbation: change x% of the notes randomly

Components of the algorithm

I Local search with 3 neighborhoods

I Perturbation: escape from local optima

I Tabu list: avoid circles

I Adaptive weights mechanism
→ Increase weight of subscore with highest value
→ Keeps the search in the right direction

LS Swap NH

LS Change1 NH

LS Change2 NH

Current s
<

s at A?

Change r% of
notes randomly

Yes
No

Update s best

Generate random s

A

Max iters
reached?

Update
adaptive weights

Iters ++

No

Exit

Exit

Optimum
found?

yes

Yes

Experiments & Results

I Full factorial experiment, n= 4068

Parameter Values Nr. of levels

N1 - Swap on with tt1=0, tt1=1
4 , tt1=1

2 , off 4
N2 - Change1 on with tt2=0, tt2=1

4 , tt2=1
2 , off 4

N3 - Change2 on with tt3=0, tt3=1
4 , tt3=1

2 , off 4
Random move 1

4 changed, 1
8 changed, off 3

Adaptive weights on, off 2
Max. iterations 10, 50, 100 3
Length of music 16, 32, 48, 64 notes 4

Experiments & Results
I Multi-Way ANOVA model with interaction effects, using R
I R2 = 0.9122

Parameter Df Sum Sq Mean Sq F value Prob (> F)

N1 1 323.99 323.99 1173.4292 < 2.2e−16 *
N2 1 723.12 723.12 2618.9755 < 2.2e−16 *
N3 1 1794.21 1794.21 6498.1957 < 2.2e−16 *
randsize 2 1441.36 720.68 2610.1349 < 2.2e−16 *
iters 2 61.69 30.84 111.7095 < 2.2e−16 *
tt1 2 0.76 0.38 1.3815 0.2513093
tt2 2 4.17 2.09 7.5519 0.0005321 *
tt3 2 104.13 52.07 188.5756 < 2.2e−16 *
adj. weights 1 5.13 5.13 18.5697 1.675e−05 *

Experiments & Results

I Mean plot for size of random jump

0 10 20
0

1

2

Random size (in %)

S
co

re

0 10 20
0

50

100

150

T
im

e
(s

)

Optimal parameter settings

Parameter Value

N1 - Swap on with tt1=0
N2 - Change1 on with tt2=1

4
N3 - Change2 on with tt3=1

2
Random move 1

8 changed
Adaptive weights on
Max. number of iterations 100
Length of music 64 notes

Implementation

I C++ → VNS

I JavaScript using the QtScript engine → MuseScore plugin
I Input:

I Key (i.e., G# minor)
I Weights for each subscores
I VNS parameters

I Result: MusicXML

Implementation

Results

I Example of counterpoint with score of 0.371394


 

 
 
 

44 
44 

Conclusion

The first species counterpoint rules have been quantified and an
efficient algorithm has been implemented to compose this style of
music

Future research:
I More complex music:

I Different styles
I Rythmic component
I More parts

I Analyse DB of existing music and extract composer
characteristics

I Compare the algorithm to others, e.g. genetic algorithm

A variable neighbourhood search
algorithm to generate first species

counterpoint musical scores
Dorien Herremans

23.11.11 - Doctoral Day

	Computer aided composing (CAC)
	Variable Neigborhood Search
	Experiments & Results
	Implementation
	Conclusion

