
A variable neighbourhood search
algorithm to generate first species

counterpoint musical scores
Dorien Herremans

23.11.11 - Doctoral Day

Overview

Computer aided composing (CAC)

Variable Neigborhood Search

Experiments & Results

Implementation

Conclusion

Computer aided composing (CAC)

Composing music = combinatorial optimization problem

I Music → combination of notes

I Good music → fits a style as well as possible

I Formalized and quantified “rules” of a style → objective
function

1st species counterpoint

I Counterpoint & Cantus firmus

44
44

I Represented as 2 vectors with midi values
[60 65 64 62 60 64 65 67 67 69 62 64 64 60 59 60]

→ Formal rules written by Fux in 1725

Quantifying musical quality

Examples of rules:

I Each large leap should be followed by stepwise motion in the
opposite direction

I Only consonant intervals are allowed

I The climax should be melodically consonant with the tonic

I All perfect intervals should be approached by contrary or
oblique motion

→ 15 vertical and 18 horizontal subscores between 0 and 1

Quantifying musical quality

fCF(s) =
∑
i

ai.subscoreHi (s)︸ ︷︷ ︸
horizontal aspect CF

(1)

fCP(s) =
∑
i

ai.subscoreHi (s)︸ ︷︷ ︸
horizontal aspect CP

+
∑
j

bj .subscoreVj (s)︸ ︷︷ ︸
vertical aspect CP

(2)

f(s) = fCF(s) + fCP(s) (3)

Optimization methods

I Exact methods
I The best solution
I E.g. exhaustive enumeration
I 16 notes with 14 different notes → 1416 possibilities

→ exponential

I Heuristic methods
I A good solution
I ’Rules of thumb’
I Fast

→ Metaheuristics

Metaheuristics

Framework that provides guidelines for the development of problem
specific solution methods

→ Variable Neighborhood Search

Variable Neigborhood Search (VNS)

1. Cantus firmus

2. Counterpoint

→ Same algorithm, different objective function

Variable Neigborhood Search (VNS)

I Local search: make small changes (moves) to a solution to go
from one solution to the next.

I Neighborhood N(x): set of all solutions that can be reached
from a given solution by move x

Ni Name Description

N1 Swap Swap two notes
N2 Change1 Change one note
N3 Change2 Change two notes

I Choose the best solution from the neighborhood

Variable neighbourhood search

I Start from an initial feasible musical fragment

Variable neighbourhood search

I Iterate over the neighborhoods

Variable neighbourhood search

I perturbation: change x% of the notes randomly

Components of the algorithm

I Local search with 3 neighborhoods

I Perturbation: escape from local optima

I Tabu list: avoid circles

I Adaptive weights mechanism
→ Increase weight of subscore with highest value
→ Keeps the search in the right direction

LS Swap NH

LS Change1 NH

LS Change2 NH

Current s
<

s at A?

Change r% of
notes randomly

Yes
No

Update s best

Generate random s

A

Max iters
reached?

Update
adaptive weights

Iters ++

No

Exit

Exit

Optimum
found?

yes

Yes

Experiments & Results

I Full factorial experiment, n= 4068

Parameter Values Nr. of levels

N1 - Swap on with tt1=0, tt1=1
4 , tt1=1

2 , off 4
N2 - Change1 on with tt2=0, tt2=1

4 , tt2=1
2 , off 4

N3 - Change2 on with tt3=0, tt3=1
4 , tt3=1

2 , off 4
Random move 1

4 changed, 1
8 changed, off 3

Adaptive weights on, off 2
Max. iterations 10, 50, 100 3
Length of music 16, 32, 48, 64 notes 4

Experiments & Results
I Multi-Way ANOVA model with interaction effects, using R
I R2 = 0.9122

Parameter Df Sum Sq Mean Sq F value Prob (> F)

N1 1 323.99 323.99 1173.4292 < 2.2e−16 *
N2 1 723.12 723.12 2618.9755 < 2.2e−16 *
N3 1 1794.21 1794.21 6498.1957 < 2.2e−16 *
randsize 2 1441.36 720.68 2610.1349 < 2.2e−16 *
iters 2 61.69 30.84 111.7095 < 2.2e−16 *
tt1 2 0.76 0.38 1.3815 0.2513093
tt2 2 4.17 2.09 7.5519 0.0005321 *
tt3 2 104.13 52.07 188.5756 < 2.2e−16 *
adj. weights 1 5.13 5.13 18.5697 1.675e−05 *

Experiments & Results

I Mean plot for size of random jump

0 10 20
0

1

2

Random size (in %)

S
co

re

0 10 20
0

50

100

150

T
im

e
(s

)

Optimal parameter settings

Parameter Value

N1 - Swap on with tt1=0
N2 - Change1 on with tt2=1

4
N3 - Change2 on with tt3=1

2
Random move 1

8 changed
Adaptive weights on
Max. number of iterations 100
Length of music 64 notes

Implementation

I C++ → VNS

I JavaScript using the QtScript engine → MuseScore plugin
I Input:

I Key (i.e., G# minor)
I Weights for each subscores
I VNS parameters

I Result: MusicXML

Implementation

Results

I Example of counterpoint with score of 0.371394

44
44

Conclusion

The first species counterpoint rules have been quantified and an
efficient algorithm has been implemented to compose this style of
music

Future research:
I More complex music:

I Different styles
I Rythmic component
I More parts

I Analyse DB of existing music and extract composer
characteristics

I Compare the algorithm to others, e.g. genetic algorithm

A variable neighbourhood search
algorithm to generate first species

counterpoint musical scores
Dorien Herremans

23.11.11 - Doctoral Day

	Computer aided composing (CAC)
	Variable Neigborhood Search
	Experiments & Results
	Implementation
	Conclusion

