

A variable neighbourhood search algorithm to generate first species counterpoint musical scores

Dorien Herremans

23.11.11 - Doctoral Day

Overview

Computer aided composing (CAC)

Variable Neigborhood Search

Experiments & Results

Implementation

Conclusion

Computer aided composing (CAC)

Composing music = combinatorial optimization problem

- \blacktriangleright Music \rightarrow combination of notes
- \blacktriangleright Good music \rightarrow fits a style as well as possible
- \blacktriangleright Formalized and quantified "rules" of a style \rightarrow objective function

1st species counterpoint

Counterpoint & Cantus firmus

- Represented as 2 vectors with midi values [60 65 64 62 60 64 65 67 67 69 62 64 64 60 59 60]
- \rightarrow Formal rules written by Fux in 1725

Quantifying musical quality

Examples of rules:

- Each large leap should be followed by stepwise motion in the opposite direction
- Only consonant intervals are allowed
- The climax should be melodically consonant with the tonic
- All perfect intervals should be approached by contrary or oblique motion
- \rightarrow 15 vertical and 18 horizontal subscores between 0 and 1

Quantifying musical quality

$$f_{\mathsf{CP}}(s) = \underbrace{\sum_{i} a_{i}.\mathsf{subscore}_{i}^{H}(s)}_{\mathsf{horizontal aspect CF}}$$
(1)
$$f_{\mathsf{CP}}(s) = \underbrace{\sum_{i} a_{i}.\mathsf{subscore}_{i}^{H}(s)}_{\mathsf{horizontal aspect CP}} + \underbrace{\sum_{j} b_{j}.\mathsf{subscore}_{j}^{V}(s)}_{\mathsf{vertical aspect CP}}$$
(2)
$$f(s) = f_{\mathsf{CF}}(s) + f_{\mathsf{CP}}(s)$$
(3)

Optimization methods

Exact methods

- The best solution
- E.g. exhaustive enumeration
- ▶ 16 notes with 14 different notes \rightarrow 14¹⁶ possibilities
 - $\rightarrow \mathsf{exponential}$
- Heuristic methods
 - A good solution
 - 'Rules of thumb'
 - Fast

\rightarrow Metaheuristics

Metaheuristics

Framework that provides guidelines for the development of problem specific solution methods

 \rightarrow Variable Neighborhood Search

Variable Neigborhood Search (VNS)

- 1. Cantus firmus
- 2. Counterpoint
- \rightarrow Same algorithm, different objective function

Variable Neigborhood Search (VNS)

- Local search: make small changes (moves) to a solution to go from one solution to the next.
- ► Neighborhood N(x): set of all solutions that can be reached from a given solution by move x

N_i	Name	Description
N_1	Swap	Swap two notes
N_2	Change1	Change one note
N_3	Change2	Change two notes

Choose the best solution from the neighborhood

Variable neighbourhood search

Start from an initial feasible musical fragment

Variable neighbourhood search

Iterate over the neighborhoods

Variable neighbourhood search

• perturbation: change x% of the notes randomly

Components of the algorithm

- Local search with 3 neighborhoods
- Perturbation: escape from local optima
- Tabu list: avoid circles
- Adaptive weights mechanism
 - \rightarrow Increase weight of subscore with highest value
 - \rightarrow Keeps the search in the right direction

Experiments & Results

Full factorial experiment, n = 4068

Parameter	Values	Nr. of levels
N_1 - Swap	on with $tt_1=0$, $tt_1=\frac{1}{4}$, $tt_1=\frac{1}{2}$, off	4
N_2 - Change1	on with $tt_2=0$, $tt_2=\frac{1}{4}$, $tt_2=\frac{1}{2}$, off	4
N_3 - Change2	on with $tt_3=0$, $tt_3=\frac{1}{4}$, $tt_3=\frac{1}{2}$, off	4
Random move	$\frac{1}{4}$ changed, $\frac{1}{8}$ changed, off	3
Adaptive weights	on, off	2
Max. iterations	10, 50, 100	3
Length of music	16, 32, 48, 64 notes	4

Experiments & Results

- Multi-Way ANOVA model with interaction effects, using R
- ▶ $R^2 = 0.9122$

Parameter	Df	Sum Sq	Mean Sq	F value	Prob $(>F)$
N_1	1	323.99	323.99	1173.4292	$< 2.2 e^{-16}$ *
N_2	1	723.12	723.12	2618.9755	$< 2.2 e^{-16}$ *
N_3	1	1794.21	1794.21	6498.1957	$< 2.2 e^{-16}$ *
randsize	2	1441.36	720.68	2610.1349	$< 2.2 e^{-16}$ *
iters	2	61.69	30.84	111.7095	$< 2.2 e^{-16}$ *
tt_1	2	0.76	0.38	1.3815	0.2513093
tt_2	2	4.17	2.09	7.5519	0.0005321 *
tt_3	2	104.13	52.07	188.5756	$< 2.2 e^{-16}$ *
adj. weights	1	5.13	5.13	18.5697	$1.675 e^{-05}$ *

Experiments & Results

Optimal parameter settings

Parameter	Value	
N_1 - Swap	on with $tt_1=0$	
N_2 - Change1	on with $tt_2 = \frac{1}{4}$	
N_3 - Change2	on with $tt_3 = \frac{1}{2}$	
Random move	$\frac{1}{8}$ changed	
Adaptive weights	on	
Max. number of iterations	100	
Length of music	64 notes	

Implementation

- $\blacktriangleright \ \mathsf{C}{++} \to \mathsf{VNS}$
- \blacktriangleright JavaScript using the QtScript engine \rightarrow MuseScore plugin
- ► Input:
 - ► Key (i.e., G# minor)
 - Weights for each subscores
 - VNS parameters
- Result: MusicXML

Implementation

Results

► Example of counterpoint with score of 0.371394

Conclusion

The first species counterpoint rules have been quantified and an efficient algorithm has been implemented to compose this style of music

Future research:

- More complex music:
 - Different styles
 - Rythmic component
 - More parts
- Analyse DB of existing music and extract composer characteristics
- Compare the algorithm to others, e.g. genetic algorithm

A variable neighbourhood search algorithm to generate first species counterpoint musical scores

Dorien Herremans

23.11.11 - Doctoral Day