The Collaborative Selective Vehicle Routing Problem
Vehicle routing in a collaborative environment

Christof Defryn Kenneth Sørensen
University of Antwerp – ANT/OR Operations Research Group
ORBEL 28 / January 30–31, 2014

Research supported by the Research Foundation - Flanders (FWO - Ph.D. fellowship) and the Interuniversity Attraction Poles (IAP) Programme initiated by the Belgian Science Policy Office (COMEX project)
Overview

The Selective Vehicle Routing Problem

Introduction to the Collaborative Environment

Solving of the Collaborative Problem
 Strategic positioning
 Gain Sharing (or Cost Allocation)

A simulation study

Concluding Remarks
Imagine...

- A central depot
- A set of N clients, waiting to be served

But...

- Only a limited number of resources (trucks) is available
- Usage of a truck is limited (distance, time)

Therefore...

- Only a limited number of clients can be served now
Imagine...
- A central depot
- A set of N clients, waiting to be served

But...
- Only a limited number of resources *(trucks)* is available
- Usage of a truck is limited *(distance, time)*
Imagine…

- A central depot
- A set of N clients, waiting to be served

But…

- Only a limited number of resources (trucks) is available
- Usage of a truck is limited ($distance, time$)

Therefore…

- Only a limited number of clients can be served now
Imagine...

- A central depot
- A set of N clients, waiting to be served

But...

- Only a limited number of resources (trucks) is available
- Usage of a truck is limited ($distance, time$)

Therefore...

- Only a limited number of clients can be served now
The Collaborative Environment introduced

Imagine...

- A central depot
- 3 partners, each having a set of clients to be served
- Each partner possesses one vehicle
The Collaborative Environment introduced

Global Result
- 8 clients are served (2-3-3)

Introduce Collaboration
- The three partners form a strategic alliance
- One vehicle can serve clients from different partners in the same trip
The Collaborative Environment introduced

Global Result
- 8 clients are served (2-3-3)

Introduce Collaboration
- The three partners form a strategic alliance
- One vehicle can serve clients from different partners in the same trip

Global Result Collaboration
- 11 clients are served (3-3-5)
A collaboration is more than calculating routes

- Companies remain independent entities
 - Results will be evaluated only on personal gains
 - Every partner wants his (important) clients to be part of the solution

Strategic positioning → Solving of the underlying VRP → Gain sharing

Feedback
How do I behave in the coalition?

“Whatever the result will be, I agree”
versus
“All my (important) clients should be part of the solution”

The partners are given the possibility to set a cost for all of their clients, that is to be paid by the group if the client is not taken into the final solution.
How do I behave in the coalition?

“Whatever the result will be, I agree”
versus
“All my (important) clients should be part of the solution”

The partners are given the possibility to set a cost for all of their clients, that is to be paid by the group if the client is not taken into the final solution

Compensation for non-delivery (CND)
How do I behave in the coalition?

- Different CND for every client
- Clients with a higher cost are more likely to be part of the solution
- Significant differences in CND will pull the solution away from maximal efficiency in favour of the expensive clients
- Number of clients visited will lower
How do I behave in the coalition?

Global Result
- 8 clients are served (2-3-3)

Global Result Collaboration
- 11 clients are served (3-3-5)

Global Result Collaboration (CND)
- 9 clients are served (3-3-3)
“Setting up a coalition should be profitable”
“How much of the coalition cost should I pay?”
“Coalition gains should be divided in a fair way”

The cost allocation method should give an incentive to the partners to behave flexible.

- CND is cost for coalition and should be kept as low as possible
Divide and Conquer

- We compare two different cost allocation approaches
 - Shapley Value
 - CND-weighted allocation
Divide and Conquer

- We compare two different cost allocation approaches
 - Shapley Value
 - CND-weighted allocation

Shapley Value

\[
x_i = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|!(n - |S| - 1)!}{n!} (\nu(S \cup \{i\}) - \nu(S))
\]

- Put forward by the CO³-consortium as possible best practice (standard)
- Cost allocation based on the impact of a partner on every subcoalition
- Ability to reward flexible behaviour
Divide and Conquer

- We compare two different cost allocation approaches
 - Shapley Value
 - CND-weighted allocation

CND-weighted allocation

\[
x_i = M_i + \frac{CND_i}{\sum_i CND_i} (C(N) - \sum M_i)
\]

- Separable cost \((M_i)\) + weighted division of remaining cost
- Only based on specific colSVRP parameters (*client location & CND policy*)
A simulation study

- Own-generated Test instances
- 3-partner coalitions
- Different scenarios
 - Impact of variable CND
 - Distance from the depot
 - Client Clustering
- Partner 1 has a variable compensation for non-delivery (CND) cost, for partners 2 and 3 the CND is fixed to 100
- For every variable setting, results are averaged over 30 different instances
Impact of Compensation for non-delivery

Client locations are generated randomly

- If CND-values are the same, an equal number of clients is served.
- Raising the CND makes your clients more important, more clients will be taken into the final solution.
Impact of Compensation for non-delivery

Similar behaviour of both allocation methods

Shapley punishes inflexibility more
Clients of Partner 1 are located relatively far from the depot

- If CND-values are the same, partners with more accessible clients will be favoured.
- Unfavoured clients need to be significant expensive (high CND value) to make the longer trip valuable.
Distance from depot

- Forcing the clients of partner 1 in the solution increases the coalition cost, which is penalized in both methods.
- Due to non-monotonic increasing costs, allocations above 100% and below 0% can be found with Shapley.
Clients belonging to the same partner are clustered in one region of the solution space. On average, clients of Partner 3 are located closer to the depot.

- The cluster closest to the depot is favoured (see Scenario 2)
- If clients are located further, they need to be significant expensive to be favoured
- Favouring one partner is at the expense of the furthest, flexible partner
Client Clustering

CND-weighted cost allocation

- CND-weighted method is based on the final routing solution. Less clients in the solution \rightarrow lower cost (Partner 2)

Shapley Value cost allocation

- Shapley Value is based on all sub-coalitions. Closer to the depot \rightarrow higher stand-alone efficiency \rightarrow lower cost (Partner 3)
To conclude

- Joining forces enables to exploit new synergies
- A collaborative problem is more than the sum of the partners
- The behaviour of partners affects both optimal route and cost allocation
- The interaction between cost allocation and routing should not be neglected
To conclude

<table>
<thead>
<tr>
<th>Shapley Value CA</th>
<th>CND-weighted CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ An established method recognized by the industry</td>
<td>✓ Direct incentive towards flexibility for the colSVRP</td>
</tr>
<tr>
<td>✓ Efficiency of all sub-coalitions</td>
<td>✓ Easy to understand/calculate</td>
</tr>
<tr>
<td>× Equal service in final solution may not be equally charged to the partners</td>
<td>✓ Cost is never negative or above 100% of coalition cost</td>
</tr>
<tr>
<td>× Allocations above 100% and below 0% possible</td>
<td>× Only based on the final solution</td>
</tr>
<tr>
<td></td>
<td>× Parameters other than client location and CND are neglected</td>
</tr>
</tbody>
</table>
The Collaborative Selective Vehicle Routing Problem
Vehicle routing in a collaborative environment

Christof Defryn Kenneth Sørensen
University of Antwerp – ANT/OR Operations Research Group
ORBEL 28 / January 30–31, 2014

Research supported by the Research Foundation - Flanders (FWO - Ph.D. fellowship) and the Interuniversity Attraction Poles (IAP) Programme initiated by the Belgian Science Policy Office (COMEX project)

christof.defryn@uantwerpen.be