The Clustered Vehicle Routing Problem

a two-level variable neighbourhood search

Christof Defryn Kenneth Sørensen
University of Antwerp – ANT/OR Operations Research Group
EURO/IFORS 13-18th July 2014 – Barcelona

Research supported by the Research Foundation - Flanders (FWO - Ph.D. fellowship) and the Interuniversity Attraction Poles (IAP) Programme initiated by the Belgian Science Policy Office (COMEX project)
Outline

Problem description

Metaheuristic approach
 Construction
 Intensification
 Diversification

Results
About the Clustered VRP
About the Clustered VRP

Assume...

- A central depot
- A set of N clients, waiting to be served
- A set of V homogeneous vehicles with capacity Q
About the Clustered VRP

Assume...
- A central depot
- A set of N clients, waiting to be served
- A set of V homogeneous vehicles with capacity Q

But...
- Clients are clustered
- Clients belonging to the same cluster should be visited by the same vehicle sequentially in the same path
Metaheuristic approach
Metaheuristic approach
Metaheuristic approach
1. **Construction (Cluster level)**
 - Randomized Bin Packing Problem

2. **Intensification**
 - VNS at cluster level
 - Conversion operator
 - VNS at customer level

3. **Diversification**
 - Perturbation
 - Mutation
 - Restart
Metaheuristic approach

1. **Construction (Cluster level)**
 - Randomized Bin Packing Problem

2. **Intensification**
 - VNS at cluster level
 - Conversion operator
 - VNS at customer level

3. **Diversification**
 - Perturbation
 - Mutation
 - Restart
Construction - Cluster level

- Given:
 - Number of vehicles
 - Capacity of each vehicle
 - Demand of a cluster

- Allocate all clusters to a vehicle

- One-dimensional Bin Packing Problem

- Heuristic methods:
 - First-fit decreasing heuristic
 - Best-fit decreasing heuristic
Construction - Cluster level

- Given:
 - Number of vehicles
 - Capacity of each vehicle
 - Demand of a cluster

- Allocate all clusters to a vehicle

- One-dimensional Bin Packing Problem

- Heuristic methods:
 - First-fit decreasing heuristic
 - Best-fit decreasing heuristic
 - Best = Close to clusters already in the vehicle
 - Consider the nbBest best actions (randomness)
1. **Construction (Cluster level)**
 - Randomized Bin Packing Problem

2. **Intensification**
 - VNS at cluster level
 - Conversion operator
 - VNS at customer level

3. **Diversification**
 - Perturbation
 - Mutation
 - Restart
Intensification - Cluster level (VNS - 1)

- Four **intra vehicle** local search operators
 - Swap (*swap position of two clusters*)
 - Relocate (*remove one cluster, insert it at a different position*)
 - Two-Opt (*remove two edges, close the tour with two new edges*)
 - Or-Opt (*remove N sequential clusters, insert them at a different position, with $N = \{2, 3, 4\}$*)

- Three **inter vehicle** local search operators
 - Swap (*swap two clusters from different vehicles*)
 - Relocate (*remove a cluster from a vehicle and insert it in another vehicle*)
 - Or-Opt (*remove N sequential clusters, insert them in another vehicle, with $N = \{2, 3, 4\}$*)
Intensification - Convert to individual clients

- 0 → D → C → B → 0
- Based on the Sweep Heuristic
- Intra-cluster client order
 - Clients are sorted according to their arctan - value

Based on the Sweep Heuristic
Intra-cluster client order
Clients are sorted according to their arctan - value
Intensification - Convert to individual clients

- Based on the Sweep Heuristic
- Intra-cluster client order
 - Clients are sorted according to their arctan-value
- Inter-cluster strategy
 - Go to the closest client
 - Only consider the first and the last client of a cluster

\[0 \rightarrow D \rightarrow C \rightarrow B \rightarrow 0\]
Intensification - Convert to individual clients

- 0 → D → C → B → 0
- Based on the Sweep Heuristic
- Intra-cluster client order
 - Clients are sorted according to their arctan - value
- Inter-cluster strategy
 - Go to the closest client
 - Only consider the first and the last client of a cluster
Intensification - Client level (VNS - 2)

- Four **intra cluster** local search operators
 - Swap *(swap position of two clients within a cluster)*
 - Relocate *(remove one client and insert it at a different position within the same cluster)*
 - Two-Opt *(remove two edges and close the tour with two new edges)*
 - Or-Opt *(remove N sequential clients, insert them at a different position within the same cluster, with N = \{2, 3, 4\})*

- Two local search operators at **cluster level**, questioning the optimal cluster sequence *(inter + intra vehicle)*
 - Swap *(swap position of two clusters)*
 - Relocate *(Remove all clients of a given cluster and insert them at a different position)*
Intensification - Client level (VNS - 2)

- Clusters should be kept together!
- If we are not able to improve the solution with the given neighbourhoods → Local Optimum
- If the solution is better than the best solution found until now, it becomes the new best solution
Metaheuristic approach

1. **Construction (Cluster level)**
 - Randomized Bin Packing Problem

2. **Intensification**
 - VNS at cluster level
 - Conversion operator
 - VNS at customer level

3. **Diversification**
 - Perturbation
 - Mutation
 - Restart
Diversification

▶ **Perturbation**
 ▶ Randomly delete 50% of the clusters in the current solution
 ▶ A new solution is then constructed by adding clusters to a random (possible) vehicle

▶ **Mutation**
 ▶ Randomly make a small change (*swap*) to the solution at cluster level
 ▶ Mutated solution is immediately improved at individual client level

▶ **Restart**
 ▶ If no improvement is found after 100 iterations
 ▶ Clear the full solution and restart the complete algorithm again
Results

- **Small and Medium sized instances**
 - 79 GVRP instances test instances - *Bektas et al. (2011)*
 - Denoted as GVRPθ_3
 - Solved as CluVRP to optimality - *Battarra et al. (2014)*

- **Large instances**
 - 20 sets of instances - *Battarra et al. (2014), based on Golden(1998)*
 - Each set consists of 11 instances with a variable number of clusters
 - Optimal results of the instances are known and will be used as a benchmark
Small and Medium sized instances

Results for the GVRPθ3 instances. Comparison between the branch and cut and price (BCP), branch and cut (BC) (*battarra et al. 2014*) and the proposed two-level variable neighbourhood approach (VNS).

<table>
<thead>
<tr>
<th></th>
<th>BCP</th>
<th></th>
<th>BC</th>
<th></th>
<th>VNS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Opt.</td>
<td>CPU (s)</td>
<td>Opt.</td>
<td>CPU (s)</td>
<td>Opt.</td>
<td>CPU (s)</td>
</tr>
<tr>
<td>A (27 inst)</td>
<td>27</td>
<td>42.52</td>
<td>27</td>
<td>4.84</td>
<td>19</td>
<td>0.16</td>
</tr>
<tr>
<td>B (23 inst)</td>
<td>23</td>
<td>7.69</td>
<td>23</td>
<td>4.99</td>
<td>17</td>
<td>0.21</td>
</tr>
<tr>
<td>P (24 inst)</td>
<td>24</td>
<td>0.48</td>
<td>24</td>
<td>3.77</td>
<td>12</td>
<td>0.21</td>
</tr>
<tr>
<td>M+G (5 inst)</td>
<td>2</td>
<td>157.25</td>
<td>4</td>
<td>25.44</td>
<td>0</td>
<td>2.92</td>
</tr>
<tr>
<td>total (79 inst)</td>
<td>76</td>
<td>26.87</td>
<td>78</td>
<td>5.86</td>
<td>48</td>
<td>0.37</td>
</tr>
</tbody>
</table>

average
Large instances

Results for the large-sized Golden instances. Comparison between the branch and cut algorithm with graph reduction and initial solution as upper bound (BC(GR+UB)), and the variable neighbourhood search (VNS)

<table>
<thead>
<tr>
<th>θ</th>
<th>BC (GR+UB)</th>
<th>VNS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Opt.</td>
<td>CPU (s)</td>
</tr>
<tr>
<td>5 (20 inst)</td>
<td>17</td>
<td>363.00</td>
</tr>
<tr>
<td>6 (20 inst)</td>
<td>19</td>
<td>86.65</td>
</tr>
<tr>
<td>7 (20 inst)</td>
<td>19</td>
<td>109.71</td>
</tr>
<tr>
<td>8 (20 inst)</td>
<td>19</td>
<td>93.86</td>
</tr>
<tr>
<td>9 (20 inst)</td>
<td>19</td>
<td>92.18</td>
</tr>
<tr>
<td>10 (20 inst)</td>
<td>20</td>
<td>48.82</td>
</tr>
<tr>
<td>11 (20 inst)</td>
<td>20</td>
<td>72.23</td>
</tr>
<tr>
<td>12 (20 inst)</td>
<td>20</td>
<td>48.71</td>
</tr>
<tr>
<td>13 (20 inst)</td>
<td>20</td>
<td>40.20</td>
</tr>
<tr>
<td>14 (20 inst)</td>
<td>20</td>
<td>39.18</td>
</tr>
<tr>
<td>15 (20 inst)</td>
<td>20</td>
<td>23.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>total</th>
<th>average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>213</td>
<td>88.66</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.00%</td>
</tr>
</tbody>
</table>
To conclude

- An efficient algorithm is developed, for solving the Clustered Vehicle Routing Problem.
- By exploiting the clustered substructure of the problem and by implementing the two-level approach, the total complexity of the problem is reduced.
- In very short calculation times, good quality solutions are obtained for instances up to 484 nodes.
The Clustered Vehicle Routing Problem
a two-level variable neighbourhood search

Christof Defryn Kenneth Sörensen
University of Antwerp – ANT/OR Operations Research Group
EURO/IFORS 13-18th July 2014 – Barcelona

Research supported by the Research Foundation - Flanders (FWO - Ph.D. fellowship) and the Interuniversity Attraction Poles (IAP) Programme initiated by the Belgian Science Policy Office (COMEX project)

christof.defryn@uantwerpen.be