An iterated local search technique for water distribution network design optimisation

University of Antwerp – ANT/OR
ORBEL- January 30, 2014
Annelies De Corte & Kenneth Sörensen
Overview

WDN
- Definitions
- Problem formulation

Test networks
- Benchmark networks
- HydroGen networks

ILS
- Sort
- Local Search
- Acceptance
- Perturbation
- Stopping criterion

Visuals

Conclusion
Water distribution network (WDN) is a network that consists of different components that transport drinking water from one or more resource nodes to multiple demand nodes.
Optimisation of WDN

<table>
<thead>
<tr>
<th>Phase</th>
<th>Decision level</th>
<th>Decision variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layout</td>
<td>Strategic</td>
<td>System connectivity, Topology, Pump and valve placement</td>
</tr>
<tr>
<td>Design</td>
<td>Tactical</td>
<td>Pipe diameter, Pipe roughness, Pump type</td>
</tr>
<tr>
<td>Programming</td>
<td>Tactical/Operational</td>
<td>Priority order users, Pump and valve control</td>
</tr>
<tr>
<td>Planning</td>
<td>Operational</td>
<td></td>
</tr>
</tbody>
</table>

→ Use OR techniques to create decision support tools
→ Focus WDN design optimisation
Problem formulation

WDN design optimisation

Finding optimal pipe-configuration out of a set of discrete pipe types in terms of investment cost, with respect to hydraulic principles, energy conservation laws and customer requirements.
Problem formulation

WDN design optimisation

Finding optimal pipe-configuration out of a set of discrete pipe types in terms of investment cost, with respect to hydraulic principles, energy conservation laws and customer requirements.
Problem formulation

WDN design optimisation

Finding optimal pipe-configuration out of a set of discrete pipe types in terms of investment cost, with respect to hydraulic principles, energy conservation laws and customer requirements.
Mathematical formulation

Objective:

\[
\text{minimize } \sum_{p \in P} \sum_{t \in T} L_p \ IC_t \ x_{p,t} \quad x_{p,t} \in \{0, 1\}
\]

Subject to: Mass conservation law

\[
\forall n \in N : \quad \sum_{i \in N/n} Q_{in} - \sum_{j \in N/n} Q_{nj} = D_n - S_n
\]

Energy conservation law

\[
\forall l \in L : \quad \sum_{p \in l} \Delta H_p = \sum_{p \in l} \frac{10.6668 \ y_p \ Q_p^{1.852}}{\sum_{t \in T} (x_{p,t} \ C_t^{1.852} D_t^{4.871})} = 0 \quad y_p \in \{-1, 1\}
\]

Minimal head requirement

\[
\forall n \in N : \quad H_n \geq H_n^{\text{min}}
\]
Dimensions not comparable to those of real networks.

Only very few benchmark networks available.
Test networks: NY city tunnels problem

<table>
<thead>
<tr>
<th>Method</th>
<th>authors</th>
<th>w</th>
<th>total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scatter Search</td>
<td>Lin et al., 2007</td>
<td>10.5</td>
<td>36.68</td>
</tr>
<tr>
<td>Simulated Annealing 1</td>
<td>Cunha et al., 2001</td>
<td>10.5</td>
<td>37.10</td>
</tr>
<tr>
<td>Tabu Search 1</td>
<td>Cunha et al., 2004</td>
<td>10.5</td>
<td>37.13</td>
</tr>
<tr>
<td>Tabu Search 2</td>
<td>Cunha et al., 2004</td>
<td>10.5</td>
<td>37.13</td>
</tr>
<tr>
<td>Immune Algorithm</td>
<td>Chu et al., 2008</td>
<td>10.5</td>
<td>37.13</td>
</tr>
<tr>
<td>Modified Immune Algorithm</td>
<td>Chu et al., 2008</td>
<td>10.5</td>
<td>37.13</td>
</tr>
<tr>
<td>Genetic Algorithm</td>
<td>Savic et al., 1997</td>
<td>10.5</td>
<td>37.13</td>
</tr>
<tr>
<td>Genetic Algorithm</td>
<td>Lippai et al., 1999</td>
<td>10.5</td>
<td>38.13</td>
</tr>
<tr>
<td>Shuffled Frog Leaping Algorithm</td>
<td>Eusuff et al., 2003</td>
<td>10.7</td>
<td>38.13</td>
</tr>
<tr>
<td>Scatter Search</td>
<td>Lin et al., 2007</td>
<td>10.7</td>
<td>38.13</td>
</tr>
<tr>
<td>Ant Colony Optimisation</td>
<td>Maier et al., 2003</td>
<td>10.7</td>
<td>38.64</td>
</tr>
<tr>
<td>Ant System</td>
<td>Zecchin et al., 2005</td>
<td>10.7</td>
<td>38.64</td>
</tr>
<tr>
<td>Max-Min Ant System</td>
<td>Zecchin et al., 2006</td>
<td>10.7</td>
<td>38.64</td>
</tr>
<tr>
<td>Harmony Search</td>
<td>Geem et al., 2006</td>
<td>10.7</td>
<td>38.64</td>
</tr>
<tr>
<td>Particle Swarm Harmony Search</td>
<td>Geem et al., 2009</td>
<td>10.7</td>
<td>38.64</td>
</tr>
<tr>
<td>Differential Evolution</td>
<td>Vasan et al., 2010</td>
<td>10.7</td>
<td>38.64</td>
</tr>
<tr>
<td>Scatter Search</td>
<td>Lin et al., 2007</td>
<td>10.7</td>
<td>38.64</td>
</tr>
<tr>
<td>Simulated Annealing 2</td>
<td>Cunha et al., 2001</td>
<td>10.7</td>
<td>38.80</td>
</tr>
<tr>
<td>Shuffled Frog Leaping Algorithm</td>
<td>Eusuff et al., 2003</td>
<td>10.7</td>
<td>38.80</td>
</tr>
<tr>
<td>Simulated Annealing 1</td>
<td>Cunha et al., 2001</td>
<td>10.9</td>
<td>40.40</td>
</tr>
<tr>
<td>Genetic Algorithm</td>
<td>Savic et al., 1997</td>
<td>10.9</td>
<td>40.42</td>
</tr>
<tr>
<td>Immune Algorithm</td>
<td>Chu et al., 2008</td>
<td>10.9</td>
<td>40.42</td>
</tr>
<tr>
<td>Modified Immune Algorithm</td>
<td>Chu et al., 2008</td>
<td>10.9</td>
<td>40.42</td>
</tr>
<tr>
<td>Scatter Search</td>
<td>Lin et al., 2007</td>
<td>10.9</td>
<td>40.42</td>
</tr>
</tbody>
</table>

$w = \text{hydraulic coefficient}$

⇒ Benchmarks are fit to demonstrate developed techniques, not for complex algorithm testing...
Test networks: HydroGen

HydroGen algorithmically generates realistic WDNs of arbitrary size and varying characteristics.
Metaheuristics

Water distribution network design optimisation:
- Mixed-integer, non-linear optimisation problem
- NP-hard

⇒ Use metaheuristic techniques to find satisfying solution in reasonable time.

Iterated Local Search

Iteratively applies a large random change (perturbation) to the current solution, on which the local search algorithm is applied afterwards.
Algorithm 1: Iterated Local Search

\(s_0 = \text{GenerateInitialSolution}; \)
\(\text{Sort;} \)
\(s = \text{LocalSearch}(s_0); \)
\(\text{while stopping criterion not met do} \)
\(\quad s' = \text{Perturbation}(s); \)
\(\quad s^* = \text{LocalSearch}(s'); \)
\(\quad s = \text{Evaluation}(s, s^*, \text{history}); \)
WDN
Test networks

ILS
Sort
Local Search
Acceptance
Perturbation
Stopping criterion

Visuals
Conclusion

SORT = 1
- sort according to decreasing pipe length

SORT = 2
- random pipe sort

SORT = ?
- LS = 1
- A = 2
- PR = 20%
- iterations = 70
Local Search

LS = 1
- move: decrease diameter
- strategy: first improving
- +/- 300 seconds

LS = 2
- move: decrease diameter
- strategy: first improving
- memory
- +/- 40 sec

SORT = 1
LS = ?
A = 2
PR = 20%
iterations = 70
Acceptance criterion

WSN
Test networks
ILS
Sort
Local Search
Acceptance
Perturbation
Stopping criterion
Visuals
Conclusion
Effect of perturbation rate

WSN
Test networks
ILS
Sort
Local Search
Acceptance
Perturbation
Stopping criterion
Visuals
Conclusion

Effect of perturbation rate

LS = 1

LS = 2

PR = 20 %
PR = 40 %
PR = 60 %
PR = 80 %

SORT = 1
LS = 1 or 2
A = 2
PR = ?
iterations = 70
Stopping criterion

WDN
Test networks
ILS
Sort
Local Search
Acceptance
Perturbation
Stopping criterion

Visuals
Conclusion

LS = 1
LS = 2

SORT = 1
LS = 1 or 2
A = 2
PR = 20%
iterations = ?
Conclusion

- WDN design optimisation is a mixed integer non-linear, NP-hard problem → use metaheuristics.

- Benchmark networks are easy for demonstration, HydroGen networks for algorithm testing.

- Analysis of sort, local search, acceptance, perturbation and stopping criterion mechanisms.

- Further testing of ILS for robustness.
ILS for WDN design optimisation

Slides available at http://webhost.ua.ac.be/antor/.

Partially supported by the Research Foundation - Flanders (FWO) and the Interuniversity Attraction Poles (IAP) Programme initiated by the Belgian Science Policy Office (COMEX project).