Algorithmic generation of water distribution networks

University of Antwerp – ANT/OR
ORBEL - February 8, 2012
Annelies De Corte & Kenneth Sörensen
Table of contents

Introduction
Definition
Optimisation of WDN
Availability test data

State of the art

Our method
Requirements
Procedure
Examples
A network that consists of different components that transport drinking water from one or more resource nodes to multiple demand nodes.
Optimisation of WDN

<table>
<thead>
<tr>
<th>Phase</th>
<th>Decision level</th>
<th>Decision variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layout</td>
<td>Strategic</td>
<td>System connectivity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Topology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pump and valve placement</td>
</tr>
<tr>
<td>Design</td>
<td>Tactical</td>
<td>Pipe diameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pipe roughness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pump type</td>
</tr>
<tr>
<td>Programming</td>
<td>Tactical/Operational</td>
<td>Priority order users</td>
</tr>
<tr>
<td>Planning</td>
<td>Operational</td>
<td>Pump and valve control</td>
</tr>
</tbody>
</table>

WDN refers to Water Distribution Networks.
→ Use OR techniques as decision support tools
→ Test developed methods on realistic WDN

But...lack of available, realistic WDN due to:

• time consuming and expensive process of:
 • data collection
 • data conversion
 • digitalisation
 • data calibration
 • data validation

• confidentiality reasons
Limited data availability leads to inability to:

- perform sensitivity analysis
- compare techniques
- make profound conclusions
- test robustness

→ need for wide range of realistic test networks...
→ generate them!
WDN generation: first attempts

New York city tunnels network \cite{Schaake&Lai1969}

Two Loop network \cite{Alperovits&Shamir1977}

14 pipe problem \cite{Gessler1985}

Hanoi network \cite{Fujiwara&Khang1990}

+ simple networks \rightarrow easy-to-use for demonstration
- no pumps, tanks, valves \rightarrow no realistic setting
- very few nodes and pipes \rightarrow no realistic setting

Networks are fit to demonstrate, not for complex algorithm testing...
New York city tunnels network

Hanoi network

14 pipes network

Two Loop network
WDN generation: more advanced attempts

EXNET (Farmani et al., 2004)

Micro- and Mesopolis (Brumbelow, 2007)

+ based on city evolution → realistic setting

- manual construction → time consuming generation
WDN generation: more advanced attempts

Modular Design System (Sitzenfrei, 2010)
- systematic generation → extensive library
- no pumps, tanks, valves → not so realistic setting
- junctions are rectangular grid points → equal pipe lengths → no realistic setting

WaterNetGen (Muranho et al., 2012)
- systematic generation → extensive library
- varying input parameters → more realistic setting
- ex-post insertion of certain elements
Example: MDS & WaterNetGen
Goal: Develop a method to generate realistic WDN

Characteristics of WDN generator tool:
- algorithmic generation
- free adjustment of parameter settings
- free and online available
- EPANET input format
Network analysis

Water distribution network can be represented as a graph $G = (N, E)$ with set N of n nodes and set E of m edges.

\Rightarrow (nearly) planar, connected, undirected graph

Analysis of 11 realistic WDN using graph theory indices:

- average degree
- maximal degree
- α-index (meshedness coefficient)
- β-index (link-node ratio)
- γ-index (sparseness index)
Network analysis: indices

\[
0 < l \\
2 \leq k_{avg} \leq 3 \\
k_{i,\text{max}} \leq 4 \\
0.3 \leq \gamma \leq 0.5 \ll 1 \\
10^{-2} \leq \alpha \leq 10^{-1} \ll 1 \\
\beta_{avg,\text{region}} < \beta_{avg,\text{town}} \\
\gamma_{avg,\text{region}} < \gamma_{avg,\text{town}} \\
\alpha_{avg,\text{region}} < \alpha_{avg,\text{town}}
\]

(number of loops)
(average degree)
(maximal degree)
(link-node ratio)
(sparseness, link density)
(meshedness)
(link-node ratio)
(sparseness, link density)
(meshedness)

Observations:

- all networks are looped (\(l\))
- rather sparse networks (\(\gamma\))
- low connectivity (\(\gamma\))
- junctions with more than 4 pipes are exceptional (\(k_{\text{max}}\))
- small towns tend to be more clustered than regions (\(\alpha, \gamma\))
Generation steps

1. Generation of clusters
2. Generation of intra-cluster pipes
3. Addition of reservoirs, tanks and pumps
4. Generation of loops
5. Addition of inter-cluster pipes
6. Assignment of load patterns
1: Generation of clusters
2: Generation of intra-cluster pipes
3: Addition of reservoirs, tanks and pumps
4: Generation of loops
5: Addition of inter-cluster pipes
6: Assignment of load patterns
Input parameters

<table>
<thead>
<tr>
<th>parameter</th>
<th>type</th>
<th>range</th>
<th>unit</th>
<th>standard value</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of clusters</td>
<td>integer</td>
<td>1 – 1,000</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>clustertype*</td>
<td>integer</td>
<td>1 – 3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>demand node characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of demand points</td>
<td>integer</td>
<td>5 – 10,000</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>elevation of demand points</td>
<td>float</td>
<td>0 – 300</td>
<td>m</td>
<td>0</td>
</tr>
<tr>
<td>base loads*</td>
<td>float</td>
<td>0 – 100</td>
<td>m³/h</td>
<td>0.00997</td>
</tr>
<tr>
<td>demand patterns*</td>
<td>float</td>
<td>0 – 50</td>
<td>-</td>
<td>0.15 - 1.5</td>
</tr>
<tr>
<td>reservoir characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of reservoirs</td>
<td>integer</td>
<td>1 – 10,000</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>reservoir hydraulic head</td>
<td>float</td>
<td>1 – 50</td>
<td>m</td>
<td>30</td>
</tr>
<tr>
<td>pump characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of pumps</td>
<td>integer</td>
<td>0 – 20,000</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>pump curve: data points*</td>
<td>(float, float)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>pipe characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of loops</td>
<td>integer</td>
<td>0 – 10,000</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>pipe roughness coefficient</td>
<td>integer</td>
<td>80 – 150</td>
<td>-</td>
<td>130</td>
</tr>
<tr>
<td>demand point distance</td>
<td>integer</td>
<td>5 – 100</td>
<td>m</td>
<td>15</td>
</tr>
<tr>
<td>pipe diameter</td>
<td>float</td>
<td>10 – 500</td>
<td>mm</td>
<td>150 - 200</td>
</tr>
<tr>
<td>tank characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of tanks</td>
<td>integer</td>
<td>1 – 10,000</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>bottom elevation</td>
<td>float</td>
<td>0 – 300</td>
<td>m</td>
<td>0</td>
</tr>
<tr>
<td>diameter</td>
<td>float</td>
<td>0 – 100</td>
<td>m</td>
<td>4</td>
</tr>
<tr>
<td>initial water level</td>
<td>float</td>
<td>0 – 200</td>
<td>m</td>
<td>10</td>
</tr>
<tr>
<td>minimum water level</td>
<td>float</td>
<td>0 – 200</td>
<td>m</td>
<td>0</td>
</tr>
<tr>
<td>maximum water level</td>
<td>float</td>
<td>0 – 200</td>
<td>m</td>
<td>20</td>
</tr>
</tbody>
</table>
Examples: 15 clusters
Examples: 15 clusters
Algorithmic generation of water distribution networks

Thank you for your attention