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Abstract The travelling salesperson problem with hotel selection (TSPHS) is a
recently proposed variant of the travelling salesperson problem. Currently, the
approach that finds the best solutions is a memetic algorithm. However, this approach
is unsuitable for applications that require very short computation times. In this paper, a
new set-partitioning formulation is presented along with a simple but powerful meta-
heuristic for the TSPHS. The algorithm is able to obtain very competitive results while
remaining at least one order of magnitude faster than the best-performing method so
far. The parameters of the metaheuristic were carefully tuned by means of an extensive
statistical experiment.

Keywords TSP · Hotel Selection ·Metaheuristics · Combinatorial Optimisation

Mathematics Subject Classification 90B06 · 90C27 · 90C59

M. Castro (B) · K. Sörensen · P. Goos
Universiteit Antwerpen, Prinsstraat 13, S.B.513, 2000 Antwerpen, Belgium
e-mail: marco.castro@uantwerpen.be

K. Sörensen
e-mail: kenneth.sorensen@uantwerpen.be

P. Vansteenwegen · P. Goos
KU Leuven, Leuven, Belgium
e-mail: pieter.vansteenwegen@kuleuven.be

P. Goos
e-mail: peter.goos@uantwerpen.be

123



16 M. Castro et al.

1 Introduction

The travelling salesperson problem with hotel selection (TSPHS) (Vansteenwegen
et al. 2011) is a recent hierarchical multi-period variant of the travelling salesperson
problem (TSP) (Applegate et al. 2007; Letchford and Lodi 2007) in which the maxi-
mum travel length for each “day trip” is limited, and the salesperson should visit one
of the available “hotels” at the end of each day. The objective of the TSPHS is the
lexicographical minimisation of the number of day trips and the total travel length. The
problem has several practical applications, e.g., the planning of multi-day salesperson
tours or the routing of electric vehicles that need to find a recharging station before
their battery runs out.

In TSPHS lingo, a “trip” corresponds to a single day of work, i.e., a sequence of
visits to customers starting and ending at a hotel, while a “tour” is a set of connected
trips that, together, visits all customers. Every trip must start and end in one of the
available hotels and should not exceed a given travel length. Of course, the initial hotel
of one trip must be the final hotel of the previous trip. Moreover, the initial and final
hotel of the tour, i.e., the initial point of the first trip and the final point of the last trip,
are the same and given.

The TSPHS was originally proposed by Vansteenwegen et al. (2011), together
with a two-index formulation and an iterated local search algorithm (ILS) (Lourenço
et al. 2010) to solve it. In Castro et al. (2013), a more powerful memetic algorithm
(MA) (Berretta et al. 2011) which outperforms the heuristic of Vansteenwegen et al.
(2011) is presented. However, although the MA is able to find excellent solutions, it
is rather complex and can be slow on large instances, i.e., instances with more than
400 customers. For this reason, it is unsuitable for practical situations that require near
“real-time” solutions (i.e., computational times of at most a few seconds). In this paper,
a fast algorithm is developed that has the advantages of being as simple as possible,
competitive in terms of solution quality, and faster by at least one order of magnitude.

Since the TSPHS is a generalisation of the classical TSP, it is also related to other
well-known node routing problems that arise in the literature: the multiple travel-
ling salesperson problem (mTSP) (Bektas 2006), the vehicle routing problem (VRP)
(Toth and Vigo 2002), and the multi-depot vehicle routing problem (MDVRP)
(Cordeau et al. 1997; Polacek et al. 2004).

Furthermore, the hotel selection requirement is related to problems involving inter-
mediate facilities (IF) in which a route is split into trips which start and end at an IF
(Angelelli and Speranza 2002; Kim et al. 2006; Crevier et al. 2007; Tarantilis et al.
2008; Ghiani et al. 2001; Polacek et al. 2008). A detailed description of the TSPHS,
including a complete literature review and a mathematical formulation, can be found
in Castro et al. (2013).

The rest of the paper is organised as follows: in Sect. 2, a new formulation for the
TSPHS is given. In Sect. 3, a new metaheuristic is described. In Sect. 4, a parametric
analysis is outlined, while the results obtained by this method are presented in Sect. 5.
Finally, in Sect. 6, conclusions and avenues for further research are presented.
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A fast metaheuristic for the TSPHS 17

2 Formulation

Let H = {0, . . . , s} and C = {s + 1, . . . , s + n} be the set of s + 1 available hotels
and the set of n customers respectively. Using this notation, the TSPHS is defined on
the complete undirected graph G = (V, E), where V = C ∪H and E = {{i, j}|i <

j; i, j ∈ V}. A travel time (ci j ) is assigned to each edge contained in E , while a
service time (τi ) is assigned to every customer i ∈ C (with τi = 0 for every hotel
i ∈ H).

Let T be the set of feasible trips, i.e., the trips that start and end at one of the
available hotels, and for which the sum of the travel times between the locations (ci j )
and the service times (τi ) at all customers contained in it, does not exceed a maximum
time limit L . A trip t ∈ T corresponds to an elementary path in G that can be either
open, if it starts and ends at different hotels, or closed, if it starts and ends at the same
hotel. The subset of closed trips is called K, and the subset of open trips is called K̄.

For each trip t ∈ T , three parameters, αi t , βht and λt , are defined. Parameter αi t

takes value 1 if trip t visits customer i ∈ C, and 0 otherwise. Parameter βht corresponds
to the number of times hotel h is contained in trip t . Hence, this parameter might take
the values 0, 1 and 2. Parameter λt indicates the total length of the trip t , i.e., the length
of the elementary path denoted by t (including the service times of the customers).

Finally, let xt be a binary variable which takes value 1 if trip t is selected and 0
otherwise, and let wh be an integer variable which denotes the number of times the
salesperson arrives at and leaves from hotel h. Using this notation, a set-partitioning
formulation for the TSPHS is the following:

min
∑

t∈T
(M + λt ) xt (1)

s. t.
∑

t∈T
αi t xt = 1, i ∈ C (2)

∑

t∈K̄
βht xt = 2wh, h ∈ H (3)

∑

t∈�(S)

xt ≤ |�(S)|
⎛

⎝
∑

t∈Ψ (S)

xt

⎞

⎠ , S ⊆ H\{0} (4)

xt ∈ {0, 1}, wh ∈ Z (5)

The objective function (1) minimises the number of trips and the total travel length
in lexicographical order. In order to give a higher priority to the minimisation of the
number of trips, a big-M approach is used. In this case, a large value M is added to
the duration of each of the selected trips so that a solution with fewer trips is always
preferred over one with more, regardless of the total travel lengths. Constraints (2)
ensure that all customers are visited exactly once, while constraints (3) ensure that
whenever the salesperson arrives at a certain hotel, she/he also leaves it. Constraints
(4) avoid disconnected cycles, where the set �(S) denotes the set of trips with both
endpoints in S, while the set �(S) denotes the set of trips with one endpoint in S
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18 M. Castro et al.

and the other endpoint outside S, with S ⊆ H\0. Constraints (4) are due to the work
of Crevier et al. (2007) for the multi-depot vehicle routing problem with inter-depot
routes (MDVRPI).

This proposed formulation differs from the one in Castro et al. (2013) in that it is
based on trips instead of arcs. It is therefore suitable for column generation/branch-and-
price methods in which the elementary shortest path problem with resource constraints
(ESPPRC) (Desaulniers et al. 2005) may be used as sub-problem in order to generate
feasible trips (or columns).

It is important to note that the classical TSP is a special case of the TSPHS when
L = ∞, τi = 0 for every i ∈ C, and s = 0. Hence, the TSPHS is at least as hard as
the TSP, and is therefore also NP-hard. For this reason, it is difficult to optimally solve
instances with a moderate or large number of customers. Therefore, a metaheuristic
solution is developed in the next section.

3 Solution strategy

In order to solve the TSPHS, a metaheuristic solution strategy is proposed in this sec-
tion. This strategy combines an order-first split-second method with a simple but pow-
erful heuristic to, respectively, construct an initial solution from scratch and improve
that solution. The aim of this metaheuristic is to be as fast as possible, and to be able to
find solutions in sub-second computational times for medium-sized instances, while
remaining competitive with the best approach in the literature in terms of solution
quality.

In different parts of this solution strategy, several operators are used which can be
categorised in the following classes:

(1) two well-known intra-trip operators to reduce the trip length: 2- opt (Croes 1958)
and Or- opt (Or 1976),

(2) two inter-trip operators to reallocate a set of customers between two trips: Relo-
cate and Exchange (Laporte et al. 2000),

(3) two hotel selection operators (explained below) to either improve the choice of a
hotel between two trips (ChangeHotels, see Fig. 1) or to remove a hotel between
two trips (JoinTrips, see Fig. 2), and

(4) two perturb operators P1(y, θ1) and P2(y, θ2) to apply perturbations to a given
solution y. Operator P1 randomly relocates θ1% of the customers, while, operator
P2 randomly changes θ2% of the intermediate hotels.

For operators Or- opt, Relocate and Exchange, strings of up to three consecu-
tive customers are considered to move or exchange.

The aim of the hotel selection operator ChangeHotels is to improve the choice
of an intermediate hotel between two consecutive trips in a TSPHS solution. Every
intermediate hotel in the solution is tested against the other available hotels. If one
or more favourable hotel swaps are identified, the intermediate hotel is replaced with
the hotel that leads to the largest improvement in the objective function. In Fig. 1, the
graph on the left represents a solution before applying the operator, while the graph on
the right represents the solution after applying the operator. The white squares indicate
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A fast metaheuristic for the TSPHS 19

the hotels, while the black circles indicate the customers. The hotel between the two
dotted arcs in the graph on the left, represents the hotel which is replaced.

The JoinTrips operator attempts to decrease the number of trips by joining any
pair of trips which have at least one hotel in common. The operator attempts to remove
every hotel in the solution, thereby potentially reversing the direction of one or more
trips, while keeping the tour feasible. In the example in Fig. 2a, a solution containing
six trips is shown. Nodes represent hotels, and arcs represent trips. The labels on the
arcs represent the order in which the trips are executed. Trips 1, 3, 4 and 6 have a
hotel in common and it is feasible to join trips 3 and 6. After applying the operator,
the resulting solution in Fig. 2b contains five trips, where trip 3∗ is the outcome of
reversing trip 6 and concatenating it with trip 3. Note that the order of executing the
trips is also modified in order to reconstruct a feasible tour.

3.1 Construction of an initial solution

In order to construct an initial solution, an order-first split-second method has been
implemented. The steps performed during the construction phase are the following:

1. Order Generate a TSP tour by means of the Lin–Kernighan heuristic (Lin and
Kernighan 1973) as implemented by Applegate et al. (2006). This tour starts and

Fig. 1 Example of a ChangeHotels move

1

2

3

4

5

6

(a) Before

1∗

2∗

3∗

5∗

4∗
(b) After

Fig. 2 Example of a JoinTrips move (snaked lines represent trips)
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ends at the initial hotel (node 0), and visits all customers without considering the
time limit L .

2. Split Partition the TSP solution into feasible TSPHS trips using a splitting proce-
dure inspired by that in Prins (2004).

Since the tour constructed in step 1 does not consider the time limit L , it is, usually,
infeasible for the TSPHS. The splitting method in step 2 optimally partitions the TSP
tour into feasible TSPHS trips in order to construct a feasible solution.

Let S be the sequence of customers in the TSP tour generated during step 1 and let
Si denote the customer at the i th position of the sequence, where i is indexed from 0 to
n− 1. Using the notation of Prins, the splitting procedure first constructs an auxiliary
graph H = (X ,A,Z) where X is a set of (s + 1)(n+ 1) vertices, A is the set of arcs
and Z denotes the weights associated with every arc in A.

The set X consists of two types of vertices. A vertex vh
i ∈ X with i < n denotes

a stay at hotel h before visiting customer Si . A vertex vh
n represents a stay at hotel h

after visiting all customers.
An arc (v

p
i , v

q
j+1) is added to A if a trip that starts from hotel p, visits all customers

from the i th to the j th position in the sequence and ends at hotel q, is feasible. The
weight zv

p
k v

q
l
∈ Z associated with every arc (v

p
k , v

q
l ) ∈ A represents the length of the

trip from v
p
k to v

q
l .

Note that arcs of the form (v
p
i , v

q
i ) (with p �= q) are allowed and represent trips that

start from hotel p (after visiting customer Si−1) and arrive at hotel q without visiting
any customer.

Once the auxiliary graph has been constructed, Dijkstra’s algorithm (Dijkstra 1959)
is used to find a shortest path from v0

0 to v0
n , i.e., a path starting at hotel 0, visiting all

customers, and ending at hotel 0. Dijkstra’s algorithm is a label-setting algorithm for
finding shortest paths in directed acyclic graphs that associates a temporary label with
each vertex in the graph. This label is an upper bound on the shortest distance from
the source vertex to that vertex until the node has been processed. The label becomes
permanent when the node has been processed and the label represents the shortest
distance instead of an upper bound.

In this splitting procedure, vertices v0
0 and v0

n represent the source and sink vertices,
respectively. Additionally, two distance labels Nv ∈ Z and Dv ∈ R are associated with
each vertex v ∈ X . Nv and Dv represent the number of trips carried out and the total
distance travelled after reaching node v, respectively.

The steps performed by the splitting procedure are presented in Algorithm 1. As
can be seen, the algorithm keeps a set of nodes to be processed (Q) and a set of
nodes already processed (Q). When the sink node t has been processed, the algorithm
terminates. A shortest path with Nt trips and a travelled length of Dt can be obtained
by following the predecessor tree from πt .

This splitting procedure in Algorithm 1, as well as the one of Prins by which this
method is inspired, belong to a category of splitting procedures known as order-first
split-second methods in the VRP literature. For a recent survey on this kind of methods,
the reader is referred to Prins et al. (2014).
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A fast metaheuristic for the TSPHS 21

Algorithm 1 Splitting procedure
procedure Split(H , s, t)

initialise:
for each vertex v ∈ X do

πv ←NIL; Nv ←∞; Dv ←∞
Ns ← 0; Ds ← 0
Q ← X ; Q ← ∅

while Q �= ∅

u ← select from Q : (Nu < Nv) ∨ (Nu = Nv ∧ Du ≤ Dv)∀ v ∈ Q\{u}
Q ← Q\{u}
for each v ∈ {v|(u, v) ∈ H} do

if (Nv > Nu + 1) ∨ ((Nv = Nu + 1) ∧ (Dv > Du + zuv)) then
Nv ← Nu + 1
Dv ← Du + zuv

πv ← u
Q ← Q ∪ {u}
if u = t then

report the predecessor tree given by π

end procedure

3.2 Improvement of a TSPHS solution

After a solution has been constructed, it is subjected to improvement by means of
a heuristic described in this section. This heuristic can be seen as an ILS where the
typically used local search is replaced by a variable neighbourhood descend (VND)
(Hansen et al. 2008, 2010). This section first describes the VND approach, and then
presents the metaheuristic in which it is embedded.

3.2.1 Variable neighbourhood descent

The improvement procedure used in our new algorithm corresponds to a VND. The
underlying idea of a VND is that of a systematic change of neighbourhood to seek
better solutions. This idea is based on the premise that a local optimum with respect
to one neighbourhood is not necessarily a local optimum with respect to another
neighbourhood. VND is a deterministic variant of the more general framework called
variable neighbourhood search (VNS), which includes a perturbation operator.

Given a solution y, the VND tries to minimise the function

F(y) =
∑

xt∈y

(M + λt ) xt + ω
∑

xt∈y

max(λt xt − L , 0),

where L is the maximum trip length. In the VND, a solution may be infeasible with
respect to the trip length constraint and, hence, the length λt of a trip t may be larger
than L . This infeasibility, if any, is given a penalty proportional to a large constant ω.
In this way, the VND attempts to recover from infeasibilities.

The VND comprises four neighbourhoods (Nk, k = 1, . . . , 4) defined by the inter-
trip and hotel selection operators, namely Relocate, Exchange, ChangeHotels
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and JoinTrips. These neighbourhoods are sequentially explored, in the order men-
tioned. In the pseudo-code shown in Algorithm 2, the structure of the VND is presented.

Algorithm 2 Variable neighbourhood descent
procedure VND(y)

k ← 1
while k ≤ 4 do

y′ ← Search(Nk , y)
if y′ is better than y then

y← y′
k ← 1

else
k ← k + 1

report y
end procedure

Furthermore, as can be seen in Algorithm 3, the search over each neighbourhood is
performed in a best improvement fashion, i.e., the complete set of candidate solutions
within a neighbourhood is explored and the best one is selected. If a better solution is
found, the new solution is improved by means of the intra-trip operators (2- opt and
Or- opt). Also, the search over each neighbourhood is repeated as long as a better
solution can be found in it.

Algorithm 3 Search over a neighbourhood Nk

procedure Search(Nk , y)
ŷ← y
repeat

ŷ′ ← arg min y̌∈Nk (ŷ) F(y̌)

if ŷ′ is better than ŷ then
ŷ← Improve ŷ′ with 2- opt/Or- opt

until no improvement has been found
report ŷ

end procedure

3.2.2 Proposed metaheuristic P-LS

This section outlines the complete metaheuristic, henceforth labelled P-LS. The meta-
heuristic operates in the domain of solutions reachable by the VND, but, in order to
introduce diversification into the search, two perturbation operators, P1 and P2, are
used. The metaheuristic has been designed to iteratively perturb and improve a given
solution in a way that is similar to an ILS.

In Algorithm 4, the pseudo-code of the complete metaheuristic is shown, where y
is the initial solution constructed with the order-first split-second method described
in Sect. 3.1, imax is the number of iterations, and θ1 and θ2 are the parameters of the
perturbation operators P1 and P2, respectively.

As can be seen, at each iteration, the algorithm executes the sequence perturb-
and-improve. First, the perturbation operator P1 is applied. That operator is applied
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A fast metaheuristic for the TSPHS 23

Algorithm 4 P- LS metaheuristic
require

Number of iterations imax
Parameters θ1 and θ2

begin
T ← Tour produced by the Lin–Kernighan heuristic
H ← Construct auxiliary graph from T
y← Split(H, v0

0 , v0
n )

for i = 1 to imax do
k ← 1
while k ≤ 2 do

y′ ← Pk (y, θk )

y′′ ← VND(y′)
if y′′ is better than y then

y← y′′
k ← 1

else
k ← k + 1

report y
end

repeatedly for as long as it leads to an improved solution. When no improvement can
be found any more, perturbation operator P2 is activated. If that operator leads to an
improved solution,then the search switches back to operator P1. Otherwise, the current
iteration ends.

4 Parametric analysis

In this section, a statistically designed experiment is presented, the aim of which is to
determine the best parameter configuration for the algorithm developed in Sect. 3.

Since the construction method for the initial solution is deterministic, the perfor-
mance of the heuristic strategy depends only on the parameters of the P-LS identified
in Algorithm 4, namely, imax, θ1 and θ2.

The experiment has been conducted on a new set of randomly generated TSPHS
instances, which have been designed to contain small, medium and large numbers of
customers, as well as diverse numbers of available hotels. These new instances are
generated in such a way that the optimal solution is known. The procedure used to
generate these instances is the same as the one used in Vansteenwegen et al. (2011)
and works as follows.

In order to create a single instance: (1) generate a set of random points, (2) solve
the classical TSP to optimality by using the Concorde TSP solver (Applegate et al.
2006), and (3) given a certain number of trips, insert artificial hotels along the optimal
TSP tour to produce TSPHS instances in such a way that the optimal tour length is
the same for both problems.

In Table 1, the parameters which have been used to generate the random instances are
shown. For each combination, five different instances have been generated, resulting
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in a total of 125 instances. Table 2 provides an overview of the values that were tested
for the algorithm’s three parameters.

In order to measure the influence of the three parameters on the quality of the
solutions obtained by the algorithm, a full factorial experiment has been performed,
and the influence of the parameters on two performance measures has been analysed:
the objective function value (F(y)) and the total CPU time. Furthermore, in order to
minimise the occurrence of infeasible solutions, a large penalty ω was used in the
objective function, F(y). More specifically, the penalty ω was set to 10,000.

For each of the two performance measures, a type III analysis of variance (ANOVA)
model has been estimated, involving a random effect for each instance and fixed main
effects and two-way interaction effects of the parameters.

Table 3 displays the results for the two estimated ANOVA models. In Column
1, the parameter or interaction is shown, while, in Columns 2 and 3, the p values
are presented for the objective function value model and for the CPU time model,
respectively. Only p values of significant effects are shown.

From Table 3, it is clear that all three parameters have a significant effect on both
performance measures. For the CPU time consumption, all possible 2-interactions are
significant, while for the objective function value, only the interaction between θ1 and
θ2 is significant. In Figs. 3 and 4, the relevant mean plots are shown.

Figure 3 shows that the more time is spent solving this problem, the better the
solution obtained. This is a typical behaviour of well-designed metaheuristics. Fur-
thermore, as can be expected, the CPU time increases linearly with the number of
iterations.

The effects of parameters θ1 and θ2 as well as their interaction with parameter
imax is similar with respect to the CPU time consumption. The larger the level of
the perturbation, the larger the computational time. This is explained by the fact that
the perturbation operators attempt to diversify the search by creating different and
usually inferior solutions. Generally, the more different a solution is from a locally
optimal solution, the worse it is. Therefore, a larger extent of perturbation requires an
additional improvement effort in subsequent iterations.

Figure 4, visualises the interaction effect of θ1 and θ2 on F . The figure shows that
θ1 should be set to a value between 0.20 and 0.40, while θ2 should have a small value,
between 0.05 and 0.20.

Table 1 Parameters of the
random instances

Parameter Value

Number of customers 75, 100, 200, 300, 500

Number of trips 5, 10, 15, 20, 25

Table 2 Parameters of the
algorithm and the values tested
in the experiment

Parameter Values Num. levels

imax 5, 10, 15, 20 4

θ1 0.05, 0.10 ,0.20, 0.30 0.4, 0.5, 0.6, 0.7, 0.8 9

θ2 0.05, 0.10 ,0.20, 0.30 0.4, 0.5, 0.6, 0.7, 0.8 9
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A fast metaheuristic for the TSPHS 25

Table 3 Significant effects in
ANOVA models for both
performance measures

Source p values

F Time

imax <0.0001 <0.0001

θ1 <0.0001 <0.0001

θ2 <0.0001 <0.0001

imax × θ1 <0.0001

imax × θ2 <0.0001

θ1 × θ2 0.0200 <0.0001

Fig. 3 Influence of parameter
imax on the objective function
value (circle) and on the
computational time (square)

5 10 15 20
1.96

1.97

1.98

1.99

2
104

imax

F

2

4

C
PU

T
im

e

Fig. 4 Interaction θ1 × θ2
versus F

0.2 0.4 0.6 0.8

1.98

2

2.02

2.04

104

θ1

F

θ2 = 0.05 θ2 = 0.10

θ2 = 0.20 θ2 = 0.30

θ2 = 0.40 θ2 = 0.50

θ2 = 0.60 θ2 = 0.70

θ2 = 0.80

Based on the results of the statistically designed experiment, the parameter levels
displayed in Table 4 were selected for the P-LS algorithm. In the next section, the results
obtained by the metaheuristic on four sets of benchmark instances are presented. All
the results reported use the settings in Table 4.
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Table 4 Selected settings of the
three parameters of the P-LS

Parameter Value

imax 20

θ1 0.30

θ2 0.10

Table 5 Results for SET 1. An asterisk indicates a solution for which the P-LS algorithm was able to find
the same solution as the MA

Instance N MA P-LS

Trips Length Time (s) Trips Length Time (s) Gap (%)

c101 100 9 9,595.6 24.1 9 9,596.9 0.1 0.01

r101 100 8 1,704.6 24.0 8 1,717.4 0.2 0.75

rc101 100 8 1,674.1 29.5 8 1,674.3 0.2 0.01

c201 100 3 9,560.0 16.2 3 9,563.1 0.1 0.03

r201 100 2 1,643.4 11.6 2 1,648.1 0.1 0.28

rc201 100 2 1,642.7 12.4 2 1,644.3 0.2 0.09

pr01* 48 2 1,412.2 2.8 2 1,412.2 0.0 0.00

pr02 96 3 2,543.3 18.1 3 2,551.3 0.2 0.31

pr03 144 4 3,415.1 48.4 4 3,421.1 0.3 0.17

pr04* 192 5 4,217.4 165.8 5 4,217.4 0.6 0.00

pr05 240 5 4,958.7 331.8 6 4,974.7 1.1 0.32

pr06 288 7 5,963.1 327.7 7 6,032.0 1.6 1.15

pr07* 72 3 2,070.3 13.1 3 2,070.3 0.0 0.00

pr08 144 4 3,372.0 64.9 4 3,399.9 0.4 0.82

pr09 216 5 4,420.3 228.0 5 4,445.7 1.1 0.57

pr10 288 7 5,940.5 409.0 7 5,991.5 2.4 0.85

Avg. 108.0 0.5 0.33

5 Results

In this section, the results produced by the P-LS algorithm for each of four sets of
benchmark instances are presented. The first set (SET 1) is created from benchmarks
for the capacitated vehicle routing problem with time windows (CVRPTW) from
Solomon (1987). The second set (SET 2) contains four subsets made up from SET 1
by including only the first 10, 15, 30 and 40 customers. The third set (SET 3) is created
from benchmarks for the classical TSP and for which the optimal solution is known.
Three different subsets are generated, containing three, five and 10 hotels. Finally, the
fourth set (SET 4) is created from the same benchmarks for the TSP, by imposing an
arbitrary time limit L and including randomly generated hotels. Unlike for SET 3, for
SET 4 no optimal solutions are known. All instances are publicly available at http://
antor.ua.ac.be/tsphs.

Due to the fact that the MA developed in Castro et al. (2013) clearly outperforms
the heuristic of Vansteenwegen et al. (2011) (referred to as I2LS), only detailed results
from the MA and the P-LS are shown. However, for every set of instances, a table
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Table 6 Summary for SET 1
MA I2LS P-LS

Num. best-known 16/16 0/16 3/16

Min. gap (%) 0.00 0.41 0.00

Max. gap (%) 0.00 5.36 1.15

Avg. gap (%) 0.00 2.64 0.33

Avg. time (s) 108.0 1.9 0.5

summarising the results is also presented. That summary table does include the I2LS
heuristic.

All experiments were run on an Intel Core i7 850 processor with 2.93 GHz and
4 GB of RAM.

For SET 1, containing 16 instances, the results are presented in Table 5. The first
two columns contain the name and the number of customers of each instance. The next
columns show the number of trips, the total travelled length and the computational
time, both for the MA and the P-LS algorithm. Since the results produced by the MA
are taken as reference, an additional column showing the percentage gap between both
approaches is included for the P-LS algorithm:

Gap = 100× Length(P-LS)− Length(M A)

Length(M A)
.

As can be seen, the gap formula only takes into account the travelled length (includ-
ing the service time) and not the number of trips. The reason to do this is because the
number of trips found by both the MA and the P-LS algorithm is the same in almost
every case.

Table 5 shows that, for instances pr01, pr04 and pr07, the P-LS was able to find the
best-known solution, while, for the rest of the instances, the gap with respect to the
best-known solutions was never larger than 1.15 %. For all instances, the same number
of trips was obtained.

Furthermore, from the summary shown in Table 6, it can be seen that the P-LS
algorithm produced an average gap of only 0.33 % in a CPU time which is two orders of
magnitude smaller than that of the MA, and similar to that of the I2LS. The percentage
gap of the I2LS is, however, large, with an average of 2.64 %.

For SET 2, which is made up of four subsets containing 13 instances each, the results
are presented in Tables 7, 8, 9 and 10 (for 10, 15, 30 and 40 customers, respectively).
The values under the columns labelled “Best” correspond to optimal solutions in case
these are available (see Castro et al. 2013), or to best-known solutions (produced by
the MA) in case the optimal solution is unknown. An asterisk indicates instances for
which no optimal solution is available.

For all instances with 10 and 15 customers, the P-LS algorithm was able to find all
optimal solutions. For the subsets of 13 instances with 30 and 40 customers, the P-LS
algorithm was able to find 11 and 5 of the best-known solutions, respectively. For all
instances, the gaps are smaller than 2.5 %.
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Table 7 Results for instances in
SET 2 containing 10 customers

Name Best P-LS

Trips Length Trips Length Gap (%)

c101 2 1,452.2 2 1,452.2 0.00

r101 2 379.8 2 379.8 0.00

rc101 2 303.2 2 303.2 0.00

pr01 1 590.4 1 590.4 0.00

pr02 1 745.6 1 745.6 0.00

pr03 1 632.9 1 632.9 0.00

pr04 1 683.4 1 683.4 0.00

pr05 1 621.2 1 621.2 0.00

pr06 1 685.2 1 685.2 0.00

pr07 1 795.3 1 795.3 0.00

pr08 1 707.2 1 707.2 0.00

pr09 1 771.7 1 771.7 0.00

pr10 1 611.9 1 611.9 0.00

Avg. 0.00

Table 8 Results for instances in
SET 2 containing 15 customers

Name Best P-LS

Trips Length Trips Length Gap (%)

c101 2 1,452.2 2 1,452.2 0.00

r101 2 379.8 2 379.8 0.00

rc101 2 303.2 2 303.2 0.00

pr01 1 590.4 1 590.4 0.00

pr02 1 745.6 1 745.6 0.00

pr03 1 632.9 1 632.9 0.00

pr04 1 683.4 1 683.4 0.00

pr05 1 621.2 1 621.2 0.00

pr06 1 685.2 1 685.2 0.00

pr07 1 795.3 1 795.3 0.00

pr08 1 707.2 1 707.2 0.00

pr09 1 771.7 1 771.7 0.00

pr10 1 611.9 1 611.9 0.00

Avg. 0.00

A special remark has to be made concerning instance rc101 in the subset with 30
customers for which a gap of −3.08 % with respect to the best-known solution is
reported. This is due to the fact that the P-LS algorithm was able to find a solution
with a shorter length than the MA, but the MA solution involves a smaller number
of trips. Every time the number of trips is different for the two solution approaches,
these results are indicated in italic in our tables with results.
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Table 9 Results for instances in
SET 2 containing 30 customers

An asterisk indicates instances
for which no optimal solution is
available

Name Best P-LS

Trips Length Trips Length Gap (%)

c101* 3 2,863.2 3 2,863.6 0.01

r101 3 655.2 3 655.2 0.00

rc101* 3 705.5 4 683.8 −3.08

pr01 1 964.8 1 964.8 0.00

pr02 2 1,078.3 2 1,078.3 0.00

pr03 1 952.5 1 952.5 0.00

pr04 2 1,091.6 2 1,091.6 0.00

pr05 1 924.7 1 924.7 0.00

pr06 2 1,063.2 2 1,063.2 0.00

pr07 2 1,130.4 2 1,130.4 0.00

pr08 2 1,006.2 2 1,006.2 0.00

pr09 2 1,091.4 2 1,091.4 0.00

pr10 1 918.9 1 918.9 0.00

Avg. −0.24

Table 10 Results for instances
in SET 2 containing 40
customers

An asterisk indicates instances
for which no optimal solution is
available

Name Best P-LS

Trips Length Trips Length Gap (%)

c101* 4 3,866.1 4 3,867.3 0.03

r101* 4 862.8 4 873.5 1.24

rc101* 4 850.3 5 870.8 2.41

pr01 2 1,160.5 2 1,160.5 0.00

pr02 2 1,336.9 2 1,336.9 0.00

pr03 2 1,303.4 2 1,303.4 0.00

pr04 2 1,259.5 2 1,259.5 0.00

pr05 2 1,200.7 2 1,200.7 0.00

pr06 2 1,242.9 2 1,242.9 0.00

pr07 2 1,407.0 2 1,410.3 0.23

pr08 2 1,222.2 2 1,222.2 0.00

pr09 2 1,284.2 2 1,284.4 0.01

pr10 2 1,200.4 2 1,200.4 0.00

Avg. 0.30

In Table 11, it is possible to see that, for every group of instances contained in
SET 2, the I2LS produced gaps higher than 5 %, while, the P-LS obtained average
gaps of at most 0.3 % and was able to find a larger number of best-known solutions. As
mentioned, the “best” solution corresponds to the optimal solution when it is available,
and to the solution value produced by the MA when it is not. For this reason, solutions
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Table 11 Summary for SET 2

I2LS P-LS

Num. customers 10 15 30 40 10 15 30 40

Num. best-known 5/13 5/13 1/13 1/13 13/13 13/13 11/13 5/13

Min. gap (%) 0.03 0.25 0.48 0.10 0.00 0.00 −3.08 0.01

Max. gap (%) 7.28 6.31 5.88 6.40 0.00 0.00 0.01 2.41

Avg. gap (%) 2.03 1.26 3.10 3.13 0.00 0.00 −0.24 0.30

Table 12 Results for SET 3 with 3 extra hotels

Name_N T S P MA P-LS

Trips Length Time (s) Gap (%) Trips Length Time (s) Gap (%)

eil_51 426 4 426 3.8 0.00 4 426 0.0 0.00

berlin_52 7,542 4 7,542 3.2 0.00 4 7,542 0.0 0.00

st_70 675 4 675 7.0 0.00 4 675 0.0 0.00

eil_76 538 4 538 27.7 0.00 5 556 0.0 3.34

pr_76 108,159 4 108,159 14.6 0.00 4 108,159 0.1 0.00

kroa_100 21,282 4 21,282 14.2 0.00 4 21,282 0.1 0.00

kroc_100 20,749 4 20,749 15.1 0.00 4 20,749 0.0 0.00

krod_100 21,294 4 21,294 15.9 0.00 4 21,294 0.1 0.00

rd_100 7,910 4 7,910 15.7 0.00 4 7,910 0.1 0.00

eil_101 629 4 629 16.9 0.00 4 629 0.1 0.00

lin_105 14,379 4 14,379 16.4 0.00 4 14,379 0.1 0.00

ch_150 6,528 4 6,528 35.7 0.00 4 6,528 0.2 0.00

tsp_225 3,916 4 3,916 93.4 0.00 4 3,916 0.5 0.00

a_280 2,579 5 2,591 228.4 0.46 5 2,615 0.8 1.39

pcb_442 50,778 4 50,778 672.1 0.00 5 51,144 3.7 0.72

pr_1002 259,045 4 259,045 3,172.8 0.00 4 259,045 34.5 0.00

Avg. 272.1 0.02 2.5 0.34

produced by the MA are assumed to have gaps of 0 % and the MA is not included in
Table 11.

The results for SET 3, containing 48 instances divided in three groups of 16
instances, are shown in Tables 12, 13 and 14. The three groups of instances differ
in the number of extra hotels used when generating them. This set was generated in
such a way that near-optimal (and in most cases optimal) solutions are available.1 For
both the MA and the P-LS, the columns display, for each instance, the number of trips
of the solution, the travelled length, the CPU time and the gap with the best-known
solution.

1 In Table 14, the gap value is omitted for instance berlin_52. The reason for this is that the MA was able
to find a solution with one trip less than the solution with optimal TSP length, which contains nine trips.
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Table 13 Results for SET 3 with 5 extra hotels

Name_N TSP MA P-LS

Trips Length Time (s) Gap (%) Trips Length Time (s) Gap (%)

eil_51 426 6 426 3.5 0.00 6 426 0.0 0.00

berlin_52 7,542 6 7,542 3.6 0.00 6 7,542 0.0 0.00

st_70 675 6 675 7.1 0.00 6 675 0.0 0.00

eil_76 538 6 538 9.3 0.00 6 566 0.1 5.20

pr_76 108,159 6 108,159 8.1 0.00 6 108,159 0.1 0.00

kroa_100 21,282 6 21,282 14.5 0.00 6 21,282 0.1 0.00

kroc_100 20,749 6 20,749 13.8 0.00 6 20,749 0.1 0.00

krod_100 21,294 6 21,294 14.7 0.00 6 21,294 0.1 0.00

rd_100 7,910 6 7,910 13.5 0.00 6 7,910 0.1 0.00

eil_101 629 6 629 16.3 0.00 6 629 0.1 0.00

lin_105 14,379 6 14,379 15.4 0.00 6 14,379 0.1 0.00

ch_150 6,528 6 6,528 40.2 0.00 6 6,528 0.2 0.00

tsp_225 3,916 6 3,916 86.8 0.00 6 3,916 0.4 0.00

a_280 2,579 7 2,646 193.1 2.59 7 2,652 0.7 2.83

pcb_442 50,778 6 50,778 483.2 0.00 7 51,087 3.1 0.60

pr_1002 259,045 7 259,774 3,882.4 0.28 6 259,045 20.5 0.00

Avg. 300.3 0.18 1.6 0.53

Table 14 Results for SET 3 with 10 extra hotels

Name_N TSP MA P-LS

Trips Length Time (s) Gap (%) Trips Length Time (s) Gap (%)

eil_51 426 10 426 3.3 0.00 10 426 0.0 0.00

berlin_52 7,542 8 7,864 3.9 − 9 7,542 0.0 0.00

st_70 675 10 675 6.6 0.00 10 675 0.0 0.00

eil_76 538 11 538 9.0 0.00 12 567 0.1 5.39

pr_76 108,159 11 108,159 7.9 0.00 11 108,159 0.1 0.00

kroa_100 21,282 11 21,282 14.1 0.00 11 21,282 0.1 0.00

kroc_100 20,749 11 20,749 13.8 0.00 11 20,749 0.1 0.00

krod_100 21,294 11 21,294 14.1 0.00 11 21,294 0.1 0.00

rd_100 7,910 10 7,910 14.3 0.00 10 7,910 0.1 0.00

eil_101 629 11 629 15.2 0.00 11 629 0.1 0.00

lin_105 14,379 10 14,379 15.3 0.00 10 14,379 0.1 0.00

ch_150 6,528 11 6,528 35.8 0.00 11 6,528 0.2 0.00

tsp_225 3,916 11 3,916 79.9 0.00 11 3,916 0.4 0.00

a_280 2,579 11 2,613 134.1 1.31 12 2,596 0.7 0.65

pcb_442 50,778 11 51,774 511.4 1.96 12 50,919 2.6 0.27

pr_1002 259,045 11 259,045 3,224.1 0.00 11 259,045 11.9 0.00

Avg. 256.4 0.21 1.0 0.39
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Table 15 Summary for SET 3

MA I2LS P-LS

Num. extra hotels 3 5 10 3 5 10 3 5 10

Num. best-known 15/16 14/16 13/16 0/16 0/16 1/16 13/16 13/16 13/16

Min. gap (%) 0.46 0.28 1.31 2.86 6.39 6.67 0.72 0.60 0.27

Max. gap (%) 0.46 2.59 1.96 17.37 22.36 20.47 3.34 5.20 5.39

Avg. gap (%) 0.02 0.18 0.21 12.73 13.82 11.08 0.34 0.53 0.39

Avg. time (s) 272.1 300.3 256.4 460.2 459.9 775.6 2.5 1.6 1.0

Table 16 Results for SET 4

Name_N MA P-LS

Trips Length Time (s) Trips Length Time (s) Gap (%)

eil_51 6 429 3.8 6 436 0.0 1.63

berlin_52 7 8,642 4.2 7 8,642 0.0 0.00

st_70 6 723 8.5 6 731 0.0 1.10

eil_76 6 548 12.4 6 539 0.0 −1.65

pr_76 6 118,061 8.2 7 118,719 0.1 0.55

kroa_100 6 22,343 19.2 7 22,044 0.1 −1.34

kroc_100 6 20,933 12.8 6 21,116 0.1 0.87

krod_100 6 21,664 17.3 6 21,464 0.1 −0.93

rd_100 6 8,244 24.2 7 8,245 0.1 0.01

eil_101 6 634 22.8 6 652 0.1 2.83

ch_150 6 6,647 54.7 6 6,728 0.2 1.21

tsp_225 6 4,571 118.7 6 4,502 0.9 −1.51

a_280 6 2,646 158.7 6 2,658 0.9 0.45

pcb_442 6 54,339 872.5 6 55,134 5.7 1.46

pr_1002 7 292,690 3,423.4 7 290,110 29.5 −0.89

Avg. 317.4 2.5 0.25

Table 15 shows the summary of the results for the 48 instances in SET 3. It is clear
that the P-LS is able to produce very competitive results. Both the MA as well as
the P-LS algorithm are able to keep their average gaps below 1 %, but it is the MA
which is able to find the largest number of the best-known solutions. The most striking
result is that the P-LS algorithm results in average gaps of 0.34, 0.53 and 0.39 % in
computational times that are two orders of magnitude smaller than the computational
times required by the other two approaches. It is also clear that the P-LS outperforms
the I2LS in terms of solution quality for this set.

For SET 4, containing 15 instances, the detailed results are presented in Table 16.
For this set, no optimal solutions are known. Hence, the results produced by the MA
are taken as benchmark. The column “Gap (%)” displays the percentage gap between
both approaches.
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Table 17 Summary for SET 4
instances

MA I2LS P-LS

Num. best-known 10/15 0 6/15

Num. new best-known – – 4

Min. gap (%) – 2.09 −1.65

Max. gap (%) – 18.03 2.83

Avg. gap (%) – 10.05 0.25

Avg. time (s) 317.4 310.7 2.5

Table 17 summarises the results of applying the three methods to SET 4. The MA is
able to find the largest number of best-known solutions. However, the P-LS algorithm
was able to find new best solutions for four instances contained in this set, namely,
eil_76, krod_100, tsp_225 and pr_1002. Despite the fact that the gap for instance
kroa_100 is negative, it does not improve the solution found by the MA, since the
number of trips for the solution found by the P-LS is larger.

Like for the instances in SET 3, the P-LS algorithm is much faster than the other
two heuristics for instances in SET 4. It produces an average gap of 0.25 %, while the
average gap for the I2LS approach amounts to 10.05 %.

6 Conclusions

The travelling salesperson problem with hotel selection (TSPHS) is a relatively new
variant of the TSP that has several practical applications. Two metaheuristic methods
exist in the literature, the iterated local search approach (I2LS) of Vansteenwegen
et al. (2011) and the memetic algorithm (MA) of Castro et al. (2013), which is the
method that produces the best solutions in terms of quality. However, for applications
requiring solutions in short computational times (e.g., real-time applications), the
MA is too slow and the I2LS does not generate high-quality solutions. In this paper,
a simple but powerful heuristic solution method, named P-LS, has been presented
for the TSPHS. The new approach combines an order-first split-second construction
method with a fast improvement phase. By intensively exploiting problem-specific
hotel selection operators, and optimising the parameters of the P-LS using a rigorous
statistically designed experiment, this approach is competitive in terms of solution
quality when compared to the best method in the literature, while at the same time
being at least one order of magnitude faster.

Future work can focus on extensions of the TSPHS, involving, for example, time
windows, multiple salespeople and hotel costs.
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