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In this paper, a metaheuristic solution procedure for the travelling salesperson problem with hotel

selection (TSPHS) is presented. The metaheuristic consists of a memetic algorithm with an embedded

tabu search, using a combination of well-known and problem-specific neighbourhoods. This solution

procedure clearly outperforms the only other existing metaheuristic in the literature. For smaller

instances, whose optimal solution is known, it is able to consistently find the optimal solution. For the

other instances, it obtains several new best known solutions.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The travelling salesperson problem with hotel selection (TSPHS)
was recently introduced by Vansteenwegen et al. [37]. The
motivation for this problem is that a salesperson often cannot
visit all customers in a single day, due to the fact that he/she can
only work for a limited number of hours per day. This implies that
the salesperson needs to select a hotel each night, on top of
determining the optimal sequence in which to visit all customers.
Every day should start and end in one of the available hotels and,
if a given day ends in a certain hotel, the next day should start in
the same hotel. The primary goal of this problem is to minimise
the required number of days, while the secondary goal is to
minimise the total travelled length.

Throughout the paper, the term ‘‘trip’’ is used to indicate a
sequence of customers, starting and ending in a hotel, while the
term ‘‘tour’’ is used for a complete sequence of connected trips
that, together, visits all customers.

Although this problem appears to be very similar to the
(regular) travelling salesperson problem (TSP), it is inherently
more difficult due to the hotel selection requirement. The selected
hotels determine to a large extent the length of the total tour.

A number of applications of the TSPHS are presented in
Vansteenwegen et al. [37]: the travelling salesperson who needs
ll rights reserved.
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several days to visit all customers; a multi-day trip for a truck
driver in which every day trip should start and end on an
appropriate parking space; a multi-day tourist visit to a certain
region; mailmen who want to split their round into a number of
connected sub-rounds in order to lighten their bag. Furthermore,
the TSPHS may be used to route electric vehicles in which routes
are split into trips whose maximum duration is constrained by
the battery charge, and batteries can be swapped or recharged at
intermediate points.

The rest of the paper is organised in the following way.
In Section 2, a review of the relevant literature is presented.
In Section 3, a description of the problem and a modified MIP
formulation is introduced, while, in Section 4, a metaheuristic
procedure for the TSPHS is outlined. In Section 5, the experiments
as well as a parametric analysis are presented. Finally, Section 6
provides a conclusion and some suggestions for future research.
2. Literature review

Several problems related to the TSPHS can be found in the
literature. In the multiple travelling salesperson problem (mTSP)
[5], a number of salespeople, all starting and ending in the same
depot, are available to visit all customers. In the vehicle routing
problem (VRP) [36], the objective is to minimise the total distance
travelled by a number of vehicles, each limited by a given
capacity. Contrary to the TSPHS, both problems only consider
one depot (or hotel). The constraint that all vehicles should start
and end at a single depot is relaxed in the multi-depot vehicle
routing problem (MDVRP) [9,30] where several depots are avail-
able, each with a fleet of vehicles. However, in the MDVRP, each
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vehicle must start and end at the same depot, while, in the TSPHS,
a trip may start at one hotel and end at another hotel. In location-
routing problems (LRP) [28], the depots are not fixed in advance.
In the basic LRP, a number of depots has to be selected from a
given set, in order to minimise the total cost of using the selected
depots and routing the vehicles starting from these depots. Each
vehicle must return to the depot it started from. The mTSP, VRP,
MDVRP and the LRP thus each have some features in common
with the TSPHS, but the most important differences are that, in
the TSPHS, only one vehicle or salesperson is available and all
trips need to be connected.

In the context of problems with intermediate facilities (IFs),
several problems related to hotel selection arise in the literature. In
the periodic vehicle routing problem with intermediate facilities
(PVRP-IF) [1], a depot is fixed in advance; customers are served
during a work shift whose maximum duration cannot exceed an
established time limit; and the vehicle may be replenished at one of
the available intermediate facilities. In the waste collection vehicle
routing problem with time windows (WCVRPTW) [6,22] a depot, a
set of customers and a set of waste disposal facilities are available.
The empty vehicles depart from the depot, collect the waste from a
set of customers and are emptied at the disposal facilities. The
vehicles may visit the disposal facilities as many times as needed
and, at the end of the work shift, the vehicles return to the depot
emptily. In the multi-depot vehicle routing problem with inter-depot
routes (MDVRPI) [11], a number of depots is available and routes are
designed to serve the customers. The routes may start and end at the
same depot or at different depots, while the time needed by each
vehicle to traverse the set of routes assigned to it stays within a
certain time limit. A variant of this problem is the vehicle routing
problem with intermediate replenishment facilities (VRPIRF) [35] in
which a fleet of vehicles is based at a single central depot.

Several arc routing problems involving intermediate facilities
also exhibit similarities with the TSPHS. In the capacitated arc
routing problem with intermediate facilities (CARPIF) [17,29],
an extension of the capacitated arc routing problem (CARP) [20],
a set of edges in a graph represent a road network. A demand and
a travel time are associated with each edge. A subset of nodes in
the graph, referred to as the intermediate facilities (IFs), repre-
sents available replenishment facilities. A fleet of vehicles with
homogeneous capacity is available at a central depot. Loaded
vehicles depart from the depot, traverse the edges on the graph
servicing demands and may be replenished at one of the available
IFs. The objective is to determine the set of vehicle routes that
minimises the total travelled time. Several real-world applica-
tions of this problem are mentioned in Polacek et al. [29]. The arc
routing problem with intermediate facilities under capacity and
length restrictions (CLARPIF) is presented as a variant of the
CARPIF in Ghiani et al. [16]. In this problem, an upper bound is
imposed on the length of each route.

Just like the TSPHS, which allows each hotel to be visited on
multiple occasions, the PVRP-IF, WCVRPTW, MDVRPI, VRPIRF,
CARPIF and CLARPIF allow multiple visits to intermediate
facilities. One difference between these problems and the
TSPHS is that there is no explicit upper bound on the trip
length. Instead, the trip lengths are indirectly bounded by the
capacity of the vehicle(s). It is true that some of the VRPs and
ARPs involve an upper bound on the travel time, but this upper
bound only applies to the total travel time. This is unlike the
TSPHS, where the upper bound on the travel time applies to
each day trip. Another important difference between the VRPs
and ARPs, on the one hand, and the TSPHS, on the other hand,
is that the primary objective of the TSPHS is the minimisation
of the number of trips (equivalent to the number of visits to
intermediate facilities), rather than minimising the duration
of the entire tour.
3. Problem description

Given a non-empty set H of hotels, and a set C of customers,
the TSPHS is defined on a complete graph G¼ ðV ,AÞwhere V ¼H [

C and A¼ fði,jÞ9i,jAV ,ia jg. Each customer iAC requires a service
or visiting time ti (with ti ¼ 0,8iAH). The time cij needed to travel
from location i to j is known for all pairs of locations. The goal is to
first minimise the number of connected trips required to visit all
customers, and then to minimise the total travel time of the tour.
The initial and final hotel of the tour (i.e., the starting point of the
first trip and the end point of the final trip) are assumed to be
identical and given (i¼0). This hotel can also be used as an
intermediate hotel during the tour. Furthermore, (a) each trip
must start and end in one of the available hotels, (b) the travel
time of each trip must not exceed a given time budget L, and (c) a
trip should start in the hotel where the previous trip ended. Since
there is no limit on the number of visits to a hotel, a solution to
the TSPHS is not necessarily a single cycle [37].

In this paper, an IP formulation is presented that modifies the
formulation of Vansteenwegen et al. [37] in two ways: (1) a
weighted objective function is used to circumvent the non-
linearity problem that results from the (lexicographical) ordering
of the two objectives and (2) the Miller–Tucker–Zemlin sub-tour
elimination constraints were replaced by the much more efficient
Dantzig–Fulkerson–Johnson constraints, allowing the solver to
find more optimal solutions in a smaller computing time. In order
to prioritise the minimisation of the number of trips, the number
of trips is multiplied by a sufficiently large number M in the
objective function so that a solution involving a smaller number
of trips always has a better objective function value than any
other solution involving a larger number of trips.

Let xij
d be a binary variable that takes the value 1 if, in trip d,

a visit to a customer or hotel i is followed by a visit to customer or
hotel j, and the value 0 otherwise. Also, let the binary variable yd

take the value 1 if, in trip d, at least one customer or hotel is
visited, and the value 0 otherwise. Thus, yd will be zero if no trip is
required on day d in order to visit all customers. In the IP
formulation’s objective function, the variables yd and xij

d are used
for the mathematical expression of the primary and secondary
objective, respectively. Finally, let D be the maximum number of
trips contained in the solution.
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The objective function (1) lexicographically minimises the
number of trips and the total distance. Constraints (2) ensure
that every customer is visited once, and constraints (3) ensure the
connectivity of each trip. Constraints (4) and (5) guarantee that
each trip starts and ends in one of the available hotels, while
constraints (6) impose an upper bound on the length of each trip.
Constraints (7) and (8) ensure that the tour starts and ends at
hotel 0. Constraints (9) and (10) guarantee that, if a trip ends in a
given hotel, the next trip starts at the same hotel. Constraints (11)
mark a trip as being used if and only if there is at least one visit to
a customer or a hotel that day, and constraints (12) ensure that
the trips are performed on consecutive days, starting on day 1.
Constraints (13), which involve subsets K of the set of customers
C, are the classical subtour elimination constraints applied to each
trip. Note that, because a feasible solution of the TSPHS may
contain cycles starting and ending at the same hotel, the subsets
K in the subtour elimination constraints (13) involve only
customers. Finally, constraints (14) and (15) are the binary
constraints for variables xij

d and yd.
end for
4. A memetic algorithm for the TSPHS

In this section, a metaheuristic procedure to solve the TSPHS is
developed. This heuristic operates on two different decision
levels: the hotel selection level, and the routing level.

As stated in Section 3, a tour starts and ends at a predefined
hotel (i¼0). A key decision in the TSPHS is the selection of
intermediate hotels so as to minimise both the number of visits
to intermediate hotels and the travel time. This decision is
referred to as ‘‘hotel selection’’ and requires a sequence
(Hs ¼/hrS,hr AH) of intermediate hotels to be determined. This
sequence may contain any number of hotels in any order, and
hotels can be repeated more than once. It turns out that the hotel
selection has a major impact on the quality of the final solution.
A similar observation was made in Kim et al. [22] in the context of
waste disposal facilities and in Vansteenwegen et al. [37]. The
hotel selection’s large impact is due to the fact that it determines
the orientation of the tour and the way in which the trips can be
constructed. In this paper, the hotel selection decision is made
using a memetic algorithm (MA) [27].

The second decision level is concerned with the actual routing
of the customers. In this paper, the routing is handled by a tabu
search (TS) [18,19] procedure embedded in the MA as an
improvement routine. The tabu search procedure uses several
neighbourhood types, some of which are well-known in the
vehicle routing literature. The remaining ones are developed
specifically for the TSPHS.
Memetic algorithms are evolutionary algorithms in which
solutions are improved using one or more local search operators.
They typically maintain a pool (called ‘‘population’’) of ‘‘chromo-
somes’’, i.e., representations of (partial) solutions. We denote the
population by P. In our memetic algorithm, a chromosome is a
sequence of intermediate hotels, representing the order in which
a solution visits the hotels. The quality or ‘‘fitness’’ of the
chromosome is given directly by the quality of the corresponding
TSPHS tour generated by the tabu search procedure. The main
idea behind the memetic algorithm is that the population con-
tains a variety of hotel sequences, and, hence, at least a few high-
quality building blocks for ultimately forming a good TSPHS
solution. The good building blocks are refined and improved
generation after generation, so that better and better TSPHS
solutions can be obtained from them.

A property of our memetic algorithm is that, at any point in
time, all chromosomes in the population involve the same number
of hotels. This number is initially set by a solution construction
procedure and decreased whenever a feasible solution with a
smaller number of hotels is found. Algorithm 1 details our memetic
algorithm using pseudo-code. The algorithm requires two para-
meters to be specified: (1) Gmax: the maximum number of genera-
tions, which defines the algorithm’s stopping criterion and (2) Ps:
the population size.

Algorithm 1. Memetic algorithm.
1: i

2: g
 f initial population (P)

3: w
 ing criterion not met do

4:
 and p2 from P
5:
 p1 � ps-o1,o2
6:
 ffspring o do

7:
 is not diverse enough do

8:
 te o
9:
 ile

10:
 with tabu search

11:
 according to established criteria

12:

13: e
nd while

4.1. Memetic algorithm operators

4.1.1. Construction methods

In this section, two construction methods for generating TSPHS
tours are presented. The first method constructs a tour from a
sequence of customers, while the second method constructs a
tour from a sequence of hotels. Both methods are used by the MA
at different stages of the algorithm.

Construction method C1: The first construction method (hen-
ceforth called C1) builds a feasible TSPHS tour from a high-quality
TSP tour which starts and ends at the predefined starting hotel
and visits all the customers, while ignoring the time limit
constraint. This giant TSP tour is found by means of the Lin–
Kernighan heuristic [26] (LKH), as implemented by Applegate
et al. [2]. This tour, which we denote by Y¼/s0,s1, . . . ,snS
(where s0 is the starting and ending hotel and s1, . . . ,sn represent
the n customers), is generally infeasible for the TSPHS.

Construction method C1 then determines the best sequence of
hotels by optimally partitioning the TSP tour into feasible trips.
This is done by a procedure inspired by the split method of Prins
[31], which, in turn, is based on the work of Beasley [4].

The partitioning procedure constructs an auxiliary graph con-
taining at most mnþ1 nodes, where m¼ 9H9 and n¼ 9C9. The first
node in the auxiliary graph is the starting hotel and has index 0.
All other nodes correspond to a customer–hotel combination.



Fig. 1. One-point crossover.
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We denote by ip a node corresponding to a stay at hotel p

preceded by a visit to the i-th customer in the giant tour, si. The
final node in the auxiliary graph is n0, representing the arrival at
the ending hotel, hotel 0, after visiting the n-th customer, sn, in
the giant tour. An arc ðip,jq

Þ is added to the graph if a trip
departing from hotel p, visiting customers siþ1 to sj, and arriving
to hotel q, is feasible. The length of the arc ðip,jq

Þ is the sum of the
time needed to travel from ip to jq via the customers siþ1 to sj and
the visiting times,

cpsiþ 1
þ

Xj�1

v ¼ iþ1

ðcsvsvþ 1
þtsv Þþtsj

þcsjq:

Our split procedure then determines a path from 0 to n0, using
the arcs ðip,jq

Þ. Unlike the split procedure of Prins, in which a
standard minimum cost path algorithm is used, our partitioning
method is adapted from Dijkstra’s algorithm [12] to sequentially
minimise the number of arcs and the total travelled length.

Construction method C2: The second construction method
(henceforth called C2) builds a TSPHS tour from a given sequence
of hotels Hs. The number of trips in the resulting TSPHS solution,
which we denote by k, is automatically equal to 9Hs9þ1. It is
possible that a given hotel sequence results in an infeasible TSPHS
solution, due to too small a number of hotels or to a poor
sequence of intermediate hotels. In case an infeasible solution is
obtained, the tabu search procedure for routing the customers
restores the feasibility (see Section 4.2).

The C2 method first creates a set of k empty trips, following
the order imposed by Hs. Customers are added to the tour using
the sequential insertion heuristic of Christofides et al. [8]. This
heuristic starts by inserting customers in the first trip one by one,
until no new customers can be added any more without violating
the maximum length of a day trip. The heuristic then continues
with the second trip, and so on. To determine the order in which
the customers are added to the trips, we used the same approach
as Christofides et al. [8].

It is possible that, using the approach of Christofides et al. [8],
a number of customers are not included in any of the trips. These
customers are added to the tour in the position that results in the
smallest violation of the maximum trip length. Finally, each trip is
improved using the well-known 3-opt operator [25]. This opera-
tor removes three edges from the current solution, and reconnects
the trip in the best of the eight possible ways, provided the
resulting trip is better.

4.1.2. Generation of initial population

The first step of the memetic algorithm is to generate Ps

chromosomes to form the initial population. For each member j

of the population, represented by the hotel sequence vector Hs
j ,

there is an associated tour Sj.
The first member of the population, H1

s , is generated using
construction method C1, which guarantees a feasible TSPHS
solution. That solution often is a high-quality solution and there-
fore provides a good upper bound, namely 9H1

s 9þ1, for the
number of trips in the optimal solution. For some instances,
construction method C1 will produce a solution involving only
one trip. In that case, the optimal TSPHS solution happens to be a
plain TSP tour, the memetic algorithm terminates immediately
and reports the solution obtained. No further optimisation of the
TSP tour is required because it has been obtained using the
powerful LKH heuristic embedded in construction method C1.

In case the first member of the population, H1
s , involves more

than one trip, Ps�1 chromosomes, each consisting of 9H1
s 9 inter-

mediate hotels, are added to the population. Due to the fact that
construction method C1 is deterministic, it cannot be used to
generate solutions other than H1

s . Therefore, the initial population
is completed using construction method C2. That method is
applied to Ps�1 random sequences of 9H1

s 9 hotels, which results
in Ps�1 different TSPHS solutions.

Finally, every solution in the population is improved using the
tabu search routine (see Section 4.2).
4.1.3. Selection and crossover

After the initial population has been formed, new generations
have to be produced by mating members of the population.
Mating population members are named parents. In our memetic
algorithm, the selection of the parents is performed using a binary
tournament method. This means that two members of the
population, h1 and h2, are selected at random, and the best of
these is chosen as the first parent p1. Next, two new population
members are selected randomly, and the best of these is chosen
as the second parent p2. The random one-point crossover operator
is then applied to the hotel sequences corresponding to the two
parents to produce two new hotel sequences, o1 and o2, which are
called the offspring. The crossover operator is shown in Fig. 1,
where hi

pj
denotes the ith hotel in the hotel sequence for parent pj.

A key feature of our crossover operator is that only a subset of
hotels is swapped between the two parents, but not the custo-
mers. In other words, the sequence of customers for offspring o1 is
taken from parent p1, whereas the sequence of customers for
offspring o2 is copied from parent p2. The crossover operator may
lead to infeasible trips, as changing the initial and/or final hotel of
a trip may cause it to be longer than the maximum allowable trip
time. Any infeasibility introduced by the crossover operator is
remedied in the tabu search improvement procedure.
4.1.4. Population management: diversification and mutation

In order to avoid exploring solutions with hotel sequences
similar, or even identical, to the ones already contained in the
population, a diversification measure is used to examine the
offspring generated by the crossover operation. More specifically,
our memetic algorithm uses the first population management
strategy suggested by Sörensen and Sevaux [33] to ensure that
the population consists of a set of substantially different chromo-
somes. This offers the advantage that the population size can be
reduced without losing diversity. Given the computationally
intensive nature of the tabu search procedure embedded in our
memetic algorithm, a small-sized population is of utmost impor-
tance. The use of a diversification strategy requires a measure for
the distance between two solutions.

To determine the distance between two hotel selection vec-
tors, the edit distance [38] is used. In the context of this paper, the
edit distance is equal to the minimum number of elementary
operations required to convert one hotel sequence into another,
where an elementary operation is defined as the addition of a
hotel, the deletion of a hotel, or the replacement of a hotel with
another hotel. Denoting the edit distance between two chromo-
somes Hi and Hj by dðHi,HjÞ, the edit distance of an offspring with



M. Castro et al. / Computers & Operations Research 40 (2013) 1716–17281720
hotel sequence Ho to the population P is given by

dPðHoÞ ¼min
iAP

dðHo,HiÞ:

The newly generated hotel sequence Ho is tentatively accepted
if dPðHoÞ4D, where D is a diversification threshold. If dPðHoÞrD,
the sequence Ho is mutated until dPðHoÞ4D. This is done by
randomly replacing one of the hotels in Ho by another hotel. The
threshold parameter D depends on the number of trips in the
solution, k, and is set to 0.5k during the execution of the memetic
algorithm.

4.1.5. Improving offspring and population update

After both offspring o1 and o2 have been tentatively accepted,
the newly generated sequences and the corresponding tours are
improved using the tabu search procedure (see Section 4.2).
However, these solutions are only included in the population
if they are better than the worst members of the existing
population.

In order to check whether offspring oi can be added to the
population, the chromosomes are sequentially sorted in ascend-
ing order of the amount of infeasibility (the sum of all per trip
violations of the time limit constraint), the number of trips, and
the total tour length. Offspring oi becomes part of the population
if it is better than the current population’s worst chromosome.

With this policy, it is ensured that solutions with a large
amount of infeasibility are removed from the population first, as
they most likely involve senseless hotel selections.

An attractive feature of this approach is that premature
convergence is avoided because the population management
has been used to ensure that the offspring is diverse enough.

4.1.6. Post-generation checking

After each iteration of the memetic algorithm, it is investigated
whether a solution involving a smaller number of trips, say kn, has
been found. If this is the case, all members of the population
involving kn

þ1 or more trips are discarded, and new population
members, all involving kn trips, are generated using construction
method C2 and improved by means of the tabu search routine.

4.2. Tabu search

As was explained at the beginning of this section, the tabu
search procedure handles the routing level of the heuristic. The
motivation to use this metaheuristic stems from the fact that it
has been very successfully used to solve other node routing
problems such as the VRP and some of its variants [3,14,15,34].

Given a solution S, the tabu search described here, tries to
minimise the weighted function

FðSÞ ¼
XD

d ¼ 1

X
ði,jÞAA

cijx
d
ijþj

XD

d ¼ 1

X
ði,jÞAA

ðcijþtjÞx
d
ij�L

2
4

3
5
þ

ð16Þ

where the binary variables xd
ij take the value 1 if arc (i,j) is

traversed during day trip d and the value 0 otherwise, and
½z�þ ¼maxðz,0Þ. The weighted function considers the total tra-
velled distance and adds a penalty to the objective function if the
time limit constraint is violated. The total penalty increases with
the extent to which the time limit constraint is violated. Our
weighted function is inspired by the work of Gendreau et al. [14]
for the CVRP.

Algorithm 2 shows the pseudo-code corresponding to our tabu
search routine, which is a standard tabu search implementation.
In the pseudo-code, Ŝ represents the best feasible solution found,
while Sn corresponds to the solution with the best value of the
weighted function F(S) found so far. The neighbourhood structure
N(S) explored by the tabu search routine is defined by the
operators Relocate and Exchange (see Section 4.2.4). The set
G represents the list of candidate moves that may be executed at
a given iteration, and the set L is the list of moves considered
tabu. The tabu list and the candidate list form a partition of the
set of all possible moves. The tabu search routine requires an
initial solution S as well as the definition of five parameters:
�
 imax: the maximum number of iterations without improve-
ment of either Ŝ or Sn;

�
 y� and yþ : the minimum and maximum number of iterations

a move is considered tabu;

�
 up: the frequency with which the penalisation factor j is

updated;

�
 uc: the frequency with which each of the trips contained

within the current solution are re-optimised.

Algorithm 2. Tabu search.
1:
 procedure TABU SEARCH
2:
 initialisation: time¼0, L¼+, Sn
¼ S.
3:
 if S is feasible then

4:
 Ŝ ¼ S
5:
 end if

6:
 while stopping criterion not met do

7:
 increase iteration counter: time¼timeþ1

8:
 reset candidate list: G¼+

9:
 for each possible move mANðSÞ do

10:
 add m to the candidate list G according to tabu

and aspiration conditions

11:
 end for

12:
 select best move: mbest ¼ arg minmAG FðS� mÞ

13:
 update solution: S¼ S� mbest
14:
 update tabu list: L

15:
 if time mod uc ¼ 0 then

16:
 improve trips in S using 3-opt operator

17:
 end if

18:
 reduce number of trips using JoinTrips operator

19:
 update Sn and Ŝ if applicable

20:
 if time mod up ¼ 0 then
21:
 update penalisation factor j

22:
 end if

23:
 end while

24:
 end procedure
4.2.1. Local search operators

The tabu search developed in this section uses three different
types of operators:
(I)
 the intra-trip 3-opt operator to shorten the trips contained
in the solution,
(II)
 two inter-trip operators, Relocate and Exchange, to reallo-
cate one or two sets of customers, and
(III)
 one trip-reduction operator, JoinTrips, to join two
consecutive trips.
The Relocate operator removes a chain of up to k con-
secutive customers from one trip, and inserts it in another trip.
The Exchange operator swaps two chains of up to k consecutive
customers from two different trips. In our tabu search procedure,
the value of k is set to 3 for both operators. A detailed description



Fig. 2. Example of a JoinTrips move. (a) Tour before skipping h1. (b) Tour after skipping h1.
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of the intra-trip and inter-trip operators can be found in Johnson
and McGeoch [21] and Laporte et al. [23], respectively.

The JoinTrips operator works as follows. Given a tour involving
k trips and a corresponding hotel sequence Hs ¼ /h1, . . . ,hk�1S, the
operator attempts to join one or more consecutive trips, while
ensuring that the resulting new solution is feasible. In the simplest
case, the operator joins two consecutive trips i and iþ1 by dropping
the intermediate hotel hi. The resulting tour then involves k�1 trips
only and the new hotel sequence is Hs ¼ h1, . . . ,hi�1,hiþ1, . . . ,hk�1

� �
.

Thus, when joining trips, the JoinTrips operator preserves the
visiting order of the remaining hotels, as well as the visiting order of
the customers. Fig. 2 provides a graphical illustration of the joining of
two consecutive trips in a simple example involving the starting hotel
h0 and three intermediate hotels h1, h2 and h3. In the figure, the
squares represent the hotels, whereas the dashed arrows represent
the set of customers which are visited in each trip. The original
solution is shown in Fig. 2(a), while the solution obtained after joining
the first and second trip by dropping hotel h1 is shown in Fig. 2(b).
The modified solution clearly involves three instead of four trips.
4.2.2. Stopping criterion

The tabu search stops if, during the past imax iterations, no
better solution than Sn or Ŝ has been found.
4.2.3. Tabu conditions and aspiration criteria

The tabu list L is a set of pairs (v,r), where v is a customer and
r is a trip number, which is considered tabu. If, at any iteration, a
performed move m relocates a customer v from trip r to another
trip, then the pair ðv,rÞ is added to the tabu list L for the next y
iterations. The parameter y is a random integer between two
user-specified tuning parameters y� and yþ .

In principle, any possible move m involving at least one of the
pairs contained in L is not considered in the next y iterations.
However, if the solution resulting from the forbidden move would
lead to a feasible solution that is better than Ŝ in terms of the
objective function (1) or to a solution that is better than Sn in
terms of the weighted function (16), then the move is added to
the candidate list G. In that case, we say that the move m satisfies
the aspiration criterion.
4.2.4. Exploration of the moves

The complete neighbourhood N(S) structure explored by the
tabu search at each iteration is the union of the neighbourhoods
defined by the Relocate and Exchange operators (see Section
4.2.1). In other words, at each iteration of the tabu search
procedure, both neighbourhoods are explored in the same Oðn2Þ

cycle, and the best move is identified.

4.2.5. Trip improvement and trip reduction operations

Trips contained in the current solution S are re-optimised
periodically. The periodicity is controlled by the parameter uc:
every uc iterations, the trips which have been modified by means
of the Relocate and Exchange operators, are improved sepa-
rately with the aid of the 3-opt operator.

Unlike the 3-opt operator, the trip-reduction operator Join-
Trips is applied at each iteration. More specifically, at each
iteration, tests are performed to check whether it is feasible to
join two or more consecutive trips, and trips are joined whenever
possible.

4.2.6. Penalisation factor update

The penalisation factor j in the weighted function (16) is
updated periodically, following the work of Gendreau et al. [14]
for the CVRP. Every up iterations, the status of the past up

solutions is examined. If all these solutions were feasible, then
j is reduced by a factor of 2. If the previous up solutions were
infeasible, then j is increased by a factor of 2. This dynamic
update of the penalisation factor allows the search to switch
between the space of feasible solutions and the space of infeasible
solutions.
5. Computational experiments

In this section, the metaheuristic is tested on a set of existing
benchmark instances. First, a brief description of the test
instances is given, followed by a description of the parametric
analysis performed to determine the best possible value for each
parameter. Finally, the results obtained for all instances are
presented. All experiments were run using an Intel Core i7-870
processor (2.93 GHz) and 4 GB of RAM.

5.1. Test instances

To test the heuristic developed in this paper, the four sets
of instances developed by Vansteenwegen et al. [37] were used.
All these instances were generated starting from well-known VRP
and TSP benchmark instances. The instances as well as a detailed
procedure for their generation are available at http://antor.ua.ac.
be/tsphs.

The first set (SET 1) contains 16 instances and was created
from six instances for the capacitated vehicle routing problem

http://antor.ua.ac.be/tsphs
http://antor.ua.ac.be/tsphs


Table 1
The seven tuning parameters and the levels con-

sidered in the computational experiment.

Parameter Levels

Ps 5, 10, 30

Gmax 5, 20, 50

imax 20, 50, 100

y� 5, 7, 10

yþ 15, 17, 20

up 5, 10, 15

uc 2, 5, 10

Table 2
Significant effects in the ANOVA models for num-

ber of trips and tour length.

Source Prob4F

(a) Number of trips

Ps 0.0138

Gmax o0.0001

imax o0.0001

up o0.0001

Ps � Gmax o0.0001
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with time windows (CVRPTW) from Solomon [32], involving 100
customers each, and 10 instances for the multi-depot vehicle
routing problem with time windows (MDVRPTW) from Cordeau
et al. [10], involving between 48 and 288 customers.

The second set of instances (SET 2) contains 52 smaller
instances and was generated using 13 instances of SET 1 by using
only the first 10, 15, 30 and 40 customers of the original instances.
Of the 16 instances in SET 1, three instances (c201, r201 and
rc201) were not included in SET 2 because their optimal solution
involves a single trip. Therefore, SET 2 contains only 4�13¼52
instances. This set of smaller instances is especially useful for
comparing the performance of our heuristic with an exact
method.

The third set (SET 3) consists of more complex instances
involving between 51 and 1002 customers, and was generated
from TSP benchmark instances in such a way that a best known
solution is available. Test instances were created for 16 different
TSP problems and a number of extra hotels (other than hotel 0).
The visiting time was set to zero for all customers. Different
subsets were generated for three different numbers of hotels
(namely 3, 5 and 10).

The fourth set of instances1 (SET 4) is obtained from the same
16 TSP instances used in SET 3, but with 10 available hotels and
no best known solutions.
Ps � up 0.0236

Gmax � imax 0.0276

Gmax � up o0.0001

imax � y� 0.0158

imax � up 0.0184

(b) Tour length

up o0.0001

Ps � Gmax 0.0187

Ps � yþ 0.0057

Ps � up 0.0100

Gmax � imax 0.0411

Gmax � up 0.0057

imax � up o0.0001

y� � uc 0.0307

Table 3
Parameter settings chosen for our MAþTS algo-

rithm based on the parametric analysis.

Parameter Value

Ps 5

Gmax 50

imax 100

y� 10

yþ 20

up 15

uc 5
5.2. Parametric analysis

In this section, the results of a statistical experiment to
determine the best values for the tuning parameters of the
metaheuristic proposed in Section 4 are discussed. The memetic
algorithm involves two tuning parameters: the population size
(Ps) and the number of generations (Gmax). In addition, the
embedded tabu search involves five tuning parameters, namely
the maximum number of iterations without improvement (imax),
the minimum and maximum values for the number of iterations a
move is considered tabu (called y� and yþ ), the frequency for
updating the penalisation factor j (up), and the frequency for re-
optimising the trips (uc).

In order to quantify the impact of each tuning parameter on
the algorithm’s performance and to determine a robust parameter
configuration, an experiment in which the levels of the para-
meters were systematically varied was conducted. In Table 1, an
overview of the seven tuning parameters is provided, as well as
the levels considered in the experiment. Each tuning parameter
was studied at three levels.

A full factorial 37 experiment was conducted on each of 15
different instances, resulting in a total of 37

�15¼32 805 obser-
vations. The 15 instances were obtained using a stratified sample
from SET 1, SET 3 and SET 4, so as to make sure that the set of test
instances involved cases with small, medium and large numbers
of customers.

To quantify the impact of the seven parameters on the
algorithm’s performance, two type III analysis of variance
(ANOVA) models were estimated, one for the number of trips
and one for the tour length. The type III ANOVA models involve a
random effect for each instance and fixed main effects and
interaction effects of the parameters. The function of the random
effect for the instances is to capture the correlation between the
37 test results for each instance. The assumption of random
1 In Vansteenwegen et al. [37], an erroneous solution is given for instance

lin105. This instance contains one customer which cannot be included in any trip

that satisfies the time budget. As a result, no feasible solution exists for this

instance. Therefore, it has been excluded from our experiments. As a result, SET

4 only contains 15 instances.
instance effects is justified because the instances can be consid-
ered a random sample from the population of all instances.

In Table 2(a) and (b), the significant effects and interactions
are shown for both performance measures. Based on these results
and on the mean plots shown in Figs. A1–A4 in Appendix A,
appropriate parameter settings were selected. These are shown in
Table 3. The computational results presented in the next section
for the four sets of instances make use of these parameter settings
of.

5.3. Results

In this section, a comparison is made between the perfor-
mance of the newly proposed memetic algorithm and that of the



Table 6
Computational results for the instances in SET 2 involving 15 customers. Values

printed in bold correspond to optimal solutions.

Name Exact MAþTS I2LS

Trips Cost Trips Cost Time

(s)

Gap

(%)

Trips Cost Gap

(%)

c101 2 1452.2 2 1452.2 0.0 0.00 2 1456.7 0.31

r101 2 379.8 2 379.8 0.0 0.00 2 391.5 3.08

rc101 2 303.2 2 303.2 0.0 0.00 2 306.1 0.96

pr01 1 590.4 1 590.4 0.0 0.00 1 590.4 0.00

pr02 1 745.6 1 745.6 0.0 0.00 1 751.1 0.74

pr03 1 632.9 1 632.9 0.0 0.00 1 649.1 2.56

pr04 1 683.4 1 683.4 0.0 0.00 1 683.4 0.00

pr05 1 621.2 1 621.2 0.0 0.00 1 660.4 6.31

pr06 1 685.2 1 685.2 0.0 0.00 1 685.2 0.00

pr07 1 795.3 1 795.3 0.0 0.00 1 812.5 2.16

pr08 1 707.2 1 707.2 0.0 0.00 1 707.2 0.00

pr09 1 771.7 1 771.7 0.0 0.00 1 773.6 0.25

pr10 1 611.9 1 611.9 0.0 0.00 1 611.9 0.00

Avg. 0.0 0.00 1.26
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I2LS heuristic developed by Vansteenwegen et al. [37]. To this
end, the CPU times for the I2LS heuristic reported in Vansteenwe-
gen et al. [37] have been rescaled according to the procedure
described in Gajpal and Abad [13]. The ratio used for the rescaling
was 0.8226.

The results for SET 1 are presented in Table 4. The table’s first
two columns contain the name of each instance and the number
of customers. Columns 3 and 4 show the number of trips and the
tour length for the solution obtained by our approach (which is
referred to as MAþTS in this section), while Column 5 shows the
required CPU time (in seconds). Columns 6 and 7 present the best
results obtained by the I2LS approach of Vansteenwegen et al.
[37], and Column 8 shows the rescaled CPU time of that heuristic.
Finally, Column 9, labelled ‘‘Gap (%)’’, presents the percentage
improvement in tour length generated by the MAþTS approach
vis-á-vis the I2LS approach. This column shows that the MAþTS
approach was able to improve the results from the I2LS heuristic
for all benchmark instances in SET 1. For two instances indicated
using asterisks in the table (r101 and pr05), the MAþTS approach
Table 4
Computational results for the benchmark instances in SET 1. Asterisks indicate

instances for which the MAþTS approach led to a smaller number of trips.

Instance N MAþTS I2LS Gap (%)

Trips Length Time (s) Trips Length Time (s)

c101 100 9 9595.6 24.1 9 9685.6 0.3 0.92

r101n 100 8 1704.6 24.0 9 1801.3 0.4 5.36

rc101 100 8 1674.1 29.5 8 1724.1 0.3 2.90

c201 100 3 9560.0 16.2 3 9600.0 1.1 0.41

r201 100 2 1643.4 11.6 2 1678.0 1.5 2.06

rc201 100 2 1642.7 12.4 2 1670.0 1.3 1.63

pr01 48 2 1412.2 2.8 2 1446.0 0.2 2.33

pr02 96 3 2543.3 18.1 3 2569.3 0.9 1.01

pr03 144 4 3415.1 48.4 4 3584.1 1.3 4.71

pr04 192 5 4217.4 165.8 5 4366.3 2.3 3.41

pr05n 240 5 4958.7 331.8 6 5122.1 4.7 3.19

pr06 288 7 5963.1 327.7 7 6137.3 6.0 2.83

pr07 72 3 2070.3 13.1 3 2090.9 0.2 0.98

pr08 144 4 3372.0 64.9 4 3504.7 1.1 3.78

pr09 216 5 4420.3 228.0 5 4617.6 3.3 4.27

pr10 288 7 5940.5 409.0 7 6097.5 6.0 2.57

Avg. 108.0 1.9 2.64

Table 5
Computational results for the instances in SET 2 involving 10 customers. Values

printed in bold correspond to optimal solutions.

Name Exact MAþTS I2LS

Trips Cost Trips Cost Time (s) Gap (%) Trips Cost Gap (%)

c101 1 955.1 1 955.1 0.0 0.00 1 955.4 0.03

r101 2 272.8 2 272.8 0.0 0.00 2 286.2 4.91

rc101 1 237.5 1 237.5 0.0 0.00 1 237.5 0.00

pr01 1 426.6 1 426.6 0.0 0.00 1 426.6 0.00

pr02 1 661.9 1 661.9 0.0 0.00 1 661.9 0.00

pr03 1 553.3 1 553.3 0.0 0.00 1 559.1 1.05

pr04 1 476.4 1 476.4 0.0 0.00 1 511.1 7.28

pr05 1 528.9 1 528.9 0.0 0.00 1 560.9 6.05

pr06 1 597.4 1 597.4 0.0 0.00 1 604.1 1.12

pr07 1 670.2 1 670.2 0.0 0.00 1 708.1 5.66

pr08 1 573.4 1 573.4 0.0 0.00 1 573.4 0.00

pr09 1 645.5 1 645.5 0.0 0.00 1 647.5 0.31

pr10 1 461.5 1 461.5 0.0 0.00 1 461.5 0.00

Avg. 0.0 0.00 2.03

Table 7
Computational results for the instances in SET 2 involving 30 customers. Values

printed in bold correspond to optimal solutions. The asterisk indicates an instance

where the MAþTS approach suggests a solution with a smaller number of trips.

Name Exact MAþTS I2LS

Trips Cost Trips Cost Time

(s)

Gap

(%)

Trips Cost Gap

(%)

c101a 3 2829.4 3 2863.2 0.0 1.19 3 2907.8 2.77

r101 3 655.2 3 655.2 0.0 0.00 3 676.2 3.20

rc101na 3 610.0 3 705.5 0.1 15.65 4 747.0 22.45

pr01 1 964.8 1 964.8 0.0 0.00 1 964.8 0.00

pr02 2 1078.3 2 1078.3 0.0 0.00 2 1140.6 5.77

pr03 1 952.5 1 952.5 0.0 0.00 1 957.1 0.48

pr04 2 1091.6 2 1091.6 0.0 0.00 2 1149.3 5.28

pr05 1 924.7 1 924.7 0.0 0.00 1 936.3 1.25

pr06 2 1063.2 2 1063.2 0.0 0.00 2 1114.4 4.81

pr07 2 1130.4 2 1130.4 0.0 0.00 2 1158.0 2.44

pr08 2 1006.2 2 1006.2 0.0 0.00 2 1056.1 4.95

pr09 2 1091.4 2 1091.4 0.0 0.00 2 1133.1 3.82

pr10 1 918.9 1 918.9 0.0 0.00 1 927.1 0.89

Avg. 0.0 1.29 4.47

a Values for columns 2 and 3 correspond to the best lower bound.

Table 8
Computational results for the instances in SET 2 involving 40 customers. Values

printed in bold correspond to optimal solutions.

Name Exact MAþTS I2LS

Trips Cost Trips Cost Time

(s)

Gap

(%)

Trips Cost Gap

(%)

c101a 4 3817.5 4 3866.1 2.6 1.27 4 3950.0 3.47

r101a 4 842.9 4 862.8 2.0 2.36 4 895.5 6.24

rc101a 3 652.1 4 850.3 2.2 30.39 4 851.2 30.53

pr01 2 1160.5 2 1160.5 0.0 0.00 2 1223.6 5.43

pr02 2 1336.9 2 1336.9 0.0 0.00 2 1418.2 6.08

pr03 2 1303.4 2 1303.4 0.0 0.00 2 1386.9 6.40

pr04 2 1259.5 2 1259.5 0.0 0.00 2 1292.9 2.65

pr05 2 1200.7 2 1200.7 0.0 0.00 2 1200.8 0.00

pr06 2 1242.9 2 1242.9 0.1 0.00 2 1279.2 2.92

pr07 2 1407.0 2 1407.0 0.0 0.00 2 1426.5 1.38

pr08 2 1222.2 2 1222.2 0.0 0.00 2 1305.9 6.84

pr09 2 1284.2 2 1284.2 0.0 0.00 2 1287.0 0.21

pr10 2 1200.4 2 1200.4 0.0 0.00 2 1233.6 2.76

Avg. 0.53 2.61 5.76

a Values for columns 2 and 3 correspond to the best lower bound.
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led to a reduction in the number of trips. The improvement in
solution quality comes at the expense of a larger CPU time.

The results for the benchmark instances in SET 2 are presented
in Tables 5–8, for 10, 15, 30 and 40 customers, respectively. To
this set of instances, an exact method was applied using the
TSPHS formulation presented in Section 3. The exact method used
was a straight cutting plane method [24] implemented with the
aid of the commercial solver Gurobi 4.6. The parameter D in the
formulation was set equal to the number of trips in the solution
produced by the MAþTS approach.

The exact method was able to find optimal solutions for 47 out
of the 52 instances in SET 2. These instances are indicated using a
bold font in Tables 5–8. In Vansteenwegen et al. [37], where an
alternative formulation was given for the TSPHS, only 27 optimal
solutions were reported for this set. Remarkably, for each of the
47 instances where an optimal solution was produced by the
exact method, the MAþTS approach led to the same solution. This
Table 9
Computational results for the instances in SET 3 with three extra hotels. Values printed

MAþTS approach led to a smaller number of trips than the I2LS approach.

Name_N TSP MAþTS

Trips Cost Time (s)

eil_51n 426 4 426 3.8

berlin_52n 7542 4 7542 3.2

st_70n 675 4 675 7.0

eil_76n 538 4 538 27.7

pr_76 108 159 4 108 159 14.6

kroa_100n 21 282 4 21 282 14.2

kroc_100n 20 749 4 20 749 15.1

krod_100n 21 294 4 21 294 15.9

rd_100n 7910 4 7910 15.7

eil_101n 629 4 629 16.9

lin_105n 14 379 4 14 379 16.4

ch_150n 6528 4 6528 35.7

tsp_225n 3916 4 3916 93.4

a_280 2579 5 2591 228.4

pcb_442n 50 778 4 50 778 672.1

pr_1002n 259 045 4 259 045 3172.8

Avg. 272.1

Table 10
Computational results for the instances in SET 3 with five extra hotels. Values printed

MAþTS approach led to a smaller number of trips than the I2LS approach.

Name_N TSP MAþTS

Trips Cost Time (s)

eil_51n 426 6 426 3.5

berlin_52 7542 6 7542 3.6

st_70n 675 6 675 7.1

eil_76n 538 6 538 9.3

pr_76n 108 159 6 108 159 8.1

kroa_100n 21 282 6 21 282 14.5

kroc_100n 20 749 6 20 749 13.8

krod_100n 21 294 6 21 294 14.7

rd_100n 7910 6 7910 13.5

eil_101n 629 6 629 16.3

lin_105n 14 379 6 14 379 15.4

ch_150n 6528 6 6528 40.2

tsp_225n 3916 6 3916 86.8

a_280n 2579 7 2646 193.1

pcb_442n 50 778 6 50 778 483.2

pr_1002n 259 045 7 259 774 3882.4

Avg. 300.3
is unlike the I2LS approach, which produced the optimal solution
in only 11 cases.

Tables 5 and 6 contain the results for the instances with 10 and
15 customers. For these numbers of customers, an optimal
solution was found for each instance by the exact method and
by our MAþTS approach. For instances with 10 customers, the
I2LS method of Vansteenwegen et al. [37] resulted in tours that
are 2.03% longer on average, with a maximum of 7.28%. For
instances with 15 customers, the average gap with the optimal
solution is only 1.26%, with a maximum of 6.31%, for the I2LS
approach.

Tables 7 and 8 present the results for the instances with 30 and
40 customers, respectively. For these instances, it was not possible
for the cutting plane method to find optimal solutions every time.

Table 7 presents the results for the instances with 30 custo-
mers. For this problem size, 11 of the 13 instances were solved to
optimality by the exact method within 6 h. For instances c101 and
in bold correspond to optimal solutions. Asterisks indicate instances for which the

I2LS

Gap (%) Trips Cost Time (s) Gap (%)

0.00 5 477 0.0 11.97

0.00 5 8150 0.0 8.06

0.00 5 754 0.0 11.70

0.00 5 629 0.1 16.91

0.00 4 111 260 0.0 2.86

0.00 5 22 806 0.0 7.16

0.00 5 23 532 0.0 13.41

0.00 5 24 870 0.1 16.79

0.00 5 8869 0.1 12.12

0.00 5 730 0.1 16.05

0.00 5 16 878 0.2 17.37

0.00 5 7426 0.0 13.75

0.00 5 4555 6.0 16.31

0.46 5 3003 9.4 16.44

0.00 5 56 058 96.2 10.39

0.00 5 291 158 7250.3 12.39

0.02 460.2 12.73

in bold correspond to optimal solutions. Asterisks indicate instances for which the

I2LS

Gap (%) Trips Cost Time (s) Gap (%)

0.00 7 469 0.0 10.09

0.00 6 8200 0.0 8.72

0.00 7 777 0.0 15.11

0.00 7 621 0.0 15.42

0.00 7 123 266 0.1 13.96

0.00 7 22 644 0.0 6.39

0.00 8 23 394 0.0 12.74

0.00 7 24 287 0.0 14.05

0.00 7 8638 0.0 9.20

0.00 8 727 0.1 15.58

0.00 7 16 082 0.2 11.84

0.00 8 7444 0.4 14.03

0.00 8 4792 5.1 22.36

2.59 8 3122 9.8 21.05

0.00 8 58 494 97.5 15.19

0.28 8 298 827 7245.9 15.35

0.18 459.9 13.82



Table 11
Computational results for the instances in SET 3 with 10 extra hotels. Values printed in bold correspond to optimal solutions. Asterisks indicate instances for which the

MAþTS approach led to a smaller number of trips than the I2LS approach.

Name_N TSP MAþTS I2LS

Trips Cost Time (s) Gap (%) Trips Cost Time (s) Gap (%)

eil_51n 426 10 426 3.3 0.00 12 460 0.1 7.98

berlin_52n 7542 8 7864 3.9 – 9 8272 0.1 9.67

st_70 675 10 675 6.6 0.00 10 675 0.3 0.00

eil_76n 538 11 538 9.0 0.00 13 607 0.4 12.82

pr_76n 108 159 11 108 159 7.9 0.00 14 121 861 0.5 12.66

kroa_100n 21 282 11 21 282 14.1 0.00 12 23 379 0.0 9.85

kroc_100n 20 749 11 20 749 13.8 0.00 13 23 337 0.0 12.47

krod_100n 21 294 11 21 294 14.1 0.00 13 23 529 1.3 10.49

rd_100n 7910 10 7910 14.3 0.00 11 9158 0.9 15.77

eil_101n 629 11 629 15.2 0.00 12 671 0.8 6.67

lin_105n 14 379 10 14 379 15.3 0.00 11 16 167 1.5 12.43

ch_150n 6528 11 6528 35.8 0.00 12 7203 5.4 10.34

tsp_225n 3916 11 3916 79.9 0.00 13 4377 24.1 11.77

a_280n 2579 11 2613 134.1 1.31 14 3107 31.5 20.47

pcb_442n 50 778 11 51 774 511.4 1.96 13 56 912 511.0 12.08

pr_1002n 259 045 11 259 045 3224.1 0.00 13 289 477 11 831.4 11.74

Avg. 256.4 0.21 775.6 11.08

Table 12
Computational results for the instances in SET 4. Asterisks indicate instances for

which the MAþTS approach led to a smaller number of trips than the I2LS

approach.

Name_N MAþTS I2LS Gap (%)

Trips Cost Time (s) Trips Cost Time (s)

eil_51 6 429 3.8 6 479 0.0 10.44

berlin_52 7 8642 4.2 7 8823 0.0 2.05

st_70n 6 723 8.5 7 745 0.0 2.95

eil_76 6 548 12.4 6 595 0.0 7.90

pr_76n 6 118 061 8.2 7 129 789 0.7 9.04

kroa_100n 6 22 343 19.2 7 22 828 0.0 2.12

kroc_100n 6 20 933 12.8 7 23 744 0.0 11.84

krod_100 6 21 664 17.3 6 24 904 0.0 13.01

rd_100 6 8244 24.2 6 8769 0.0 5.99

eil_101 6 634 22.8 6 693 0.0 8.51

ch_150n 6 6647 54.7 7 7679 0.1 13.44

tsp_225n 6 4571 118.7 7 4819 4.3 5.15

a_280n 6 2646 158.7 7 3123 7.5 15.27

pcb_442n 6 54 339 872.5 7 63 822 72.3 14.86

pr_1002 7 292 690 3423.4 7 330 282 4574.9 11.38

Avg. 317.4 310.6 8.93

2 A special remark has to be made for instance berlin_52 in Table 11 for which

no gap is reported. The reason for this is that the TSPHS solution contains one trip

less than the solution with optimal length generated from the optimal TSP

solution, containing nine trips. This result shows that — in rare cases — the

optimal TSPHS solutions can differ from the optimal TSP solutions.
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rc101, which were not solved to optimality, the table’s third and
fourth columns show the best lower bound reported by the
solver. While the I2LS approach produced only one optimal
solution, the MAþTS approach matches the exact method for
the 11 cases solved to optimality. For instance rc101, the MAþTS
approach leads to a solution involving one fewer day trip than the
I2LS method. For instance c101, the length of the tour suggested
by the MAþTS method is better than that suggested by the I2LS
approach, but the number of day trips is the same for the two
methods.

Like for the 30-customer cases, the exact method was unable
to find optimal solutions for all instances with 40 customers
within a time limit of 6 h. However, as can be seen from Table 8,
an optimal solution was produced for 10 of the 13 instances.
For the same 10 instances, the MAþTS heuristic method found
the optimal solution as well. For instances c101, r101 and rc101,
for which no optimal solution was found by the exact method,
Table 8 reports the best lower bounds found by the exact method.
For instances c101 and r101, the gap between the MAþTS
solution and the lower bound only amounts to 1.27% and 2.36%,
respectively, while, for instance rc101, the gap exceeds 30%.
The large gap for the latter instance may be due to a poor lower
bound. As a matter of fact, the lower bound is based on a scenario
involving three day trips. So small a number of trips may not be
feasible for this instance, since neither the MAþTS approach nor
the I2LS approach were able to find a feasible solution involving
three trips.

The results for SET 3 are shown in Tables 9–11. SET 3 was
designed with the purpose of having a known optimal value for
the tour length for each instance, which corresponds to its
optimal TSP solution. In Column 1, the tables show the name
and the size of the instance, while, in Column 2, the optimal
length of the TSP solution for each instance is presented. Columns
3–6 contain the solution found by our MAþTS heuristic, the CPU
time (in seconds) as well as the gap between the tour length
corresponding to the MAþTS solution and the length of the
optimal TSP solution. In a similar way, Columns 7–10 show the
results obtained with the I2LS heuristic.

The results for the instances in SET 3 indicate that our MAþTS
heuristic was able to find solutions with the optimal length for 15
of the 16 instances involving three extra hotels, for 14 of the 16
instances involving five extra hotels, and for 13 of the 16
instances involving 10 extra hotels. This is in contrast with the
I2LS approach, which was able to find the optimal length for one
instance with 10 extra hotels only.2 The columns labelled ‘‘Gap
(%)’’ in Tables 9–11 show that the MAþTS heuristic consistently
outperforms the I2LS approach.

Interestingly, for most of the instances in SET 3, the best
solution was found while generating the initial population. This is
a result of the way in which this set of instances was generated,
i.e., by splitting an optimal solution of the TSP without hotel
selection in trips. Because the C1 construction method works in a



Fig. 4. MAþTS.

Table 13
Summary of results.

SET 1 SET 2 SET 3 SET 4

MAþTS I2LS MAþTS I2LS MAþTS I2LS MAþTS I2LS

# Optimal solutions – – 47/47 11/47 – – – –

Best known solutions 16/16 0/16 – – 42/48 1/48 15/15 0/15

Average gap (%) 0.00 2.49 0.0 2.34 0.14 12.54 0.00 8.93

Average time 108.0 1.9 0.13 – 276.3 565.2 317.4 310.6

Fig. 3. C1 construction methodþtabu search.
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very similar way, it is often able to find the optimal sequence of
hotels without requiring local search.

Finally, Table 12 contains the results for the benchmark
instances in SET 4. This set contains the most difficult instances
available. For each of these instances, our heuristic method was
able to improve the best known solution. Column 8 presents the
percentage improvement in length achieved by our heuristic
compared to the best known solution. More importantly, for
instances st_70, pr_76, kroa_100, kroc_100, ch_150, tsp_225,
a_280 and pcb_442, the MAþTS approach was able to reduce
the number of trips by one.

In Table 13, a summary of the results is provided. The table
contains information related to the performance of both heuristic
approaches (MAþTS and I2LS) for each set of instances. The table
contains two columns for each set. Each time, the first column
corresponds to the MAþTS heuristic, while the second column
corresponds to the I2LS approach. The table’s first row shows the
number of optimal solutions found by each approach, for those
cases where the exact method produced an optimal solution. The
second row presents the number of best known solutions found
by each heuristic. The third row presents, for each heuristic, the
average gap to the best known solution (for sets 1, 3 and 4) or to
the optimal solution (for set 2). Finally, the fourth row presents
the average time, in seconds, required for each approach. It should
be clear that, in terms of the first three performance measures in
Table 13, our approach by far outperforms the I2LS approach.

Computing times for SET 1 illustrate the behaviour of both
heuristics for most of the instances. In general, the MAþTS is
considerably slower than the I2LS approach. However, for SET
3 and SET 4, the I2LS heuristic is slower on average than the
MAþTS approach. The large average computing time for the I2LS
approach in these sets is, however, entirely due to one instance
involving more than 1000 customers, namely instance pr_1002.
This is the only instance for which the MAþTS heuristic requires
a smaller computing time than the I2LS approach.
6. Conclusions

The TSPHS is a difficult optimisation problem which arises in
several practical situations. In this paper, a new heuristic solution
method for the TSPHS is presented. The heuristic is a memetic
algorithm with a tabu search embedded. The memetic algorithm
solves the TSPHS by distinguishing two decision levels: the hotel
selection and the routing of customers. This approach clearly
outperforms the only existing heuristic in the literature in terms
of solution quality. This is demonstrated by the fact that the
memetic algorithm was able to find optimal solutions for all
instances with a known optimal solution or a known optimal tour
length. The newly developed memetic algorithm also outperforms
the GRASPþVND approach described in an unpublished working
paper by Castro et al. [7].

The hotel selection is a key decision when solving the TSPHS.
A poor selection of intermediate hotels has a detrimental impact
on the quality of the final solution. This is illustrated by
Figs. 3 and 4. Fig. 3 shows a solution for instance pr_76 obtained
by the C1 construction method and improved with the tabu
search routine including basic hotel selection moves, but without
using the memetic algorithm to change the selection of hotels.
Fig. 4 shows a solution obtained by the MAþTS approach for the
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same instance. In the latter solution, a different selection of hotels
makes it possible to visit all customers in six instead of eight trips
and using a shorter tour.

We believe that more research on the TSPHS would be useful.
First, studying extensions of the problem, including more sales-
men, time windows, hotel costs, and vehicle capacities as well as
the design of more difficult instances would have added value.
Also, it would be useful to seek alternative formulations of the
TSPHS problem in order to be able to solve larger problems to
optimality with a commercial solver.
Fig. A2. Interactions Gmax

Fig. A3. Interactions imax

Fig. A1. Interactio
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Appendix A. Plots of the parametric analysis
� imax and Gmax � up .

� y� and imax � up .

n Ps � Gmax.



Fig. A4. Interaction Ps � up .
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