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a b s t r a c t

For the algorithmic construction of optimal experimental designs, it is important to be able
to evaluate small modifications of given designs in terms of the optimality criteria at a
low computational cost. This can be achieved by using powerful update formulas for the
optimality criteria during the design construction. The derivation of such update formulas
for evaluating the impact of changes to the levels of easy-to-change factors and hard-to-
change factors in split-plot designs aswell as the impact of a swap of points between blocks
or whole plots in block designs or split-plot designs is described.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Update formulas for the inverse of the information matrix in a regression analysis after deleting or adding one or more
points have been known for many years. They have, for instance, proven useful for evaluating the impact of dropping
outliers or influential points on the regression. The same and other update formulas have also been used extensively in
the construction of experimental designs (see, for instance, Eccleston (1980), John and Whitaker (2000), John and Williams
(2000), John (2001), Nguyen (1994), Nguyen and Liu (2008), and Nguyen and Williams (2006)). Update formulas for the
determinant of the information matrix have played an important role in the development of algorithms for constructing
D-optimal designs. For instance, the K-exchange algorithm by Johnson and Nachtsheim (1983) was justified by the update
formula for deleting a point from a design, and the KL-exchange algorithm by Atkinson and Donev (1989) was essentially
motivated by an update formula for the exchange of a design point with a candidate point (for a detailed discussion of
these algorithms, see Nguyen and Miller (1992)). The coordinate-exchange algorithm for D-, A- and V-optimal designs
introduced by Meyer and Nachtsheim (1995) also heavily uses computationally cheap update formulas for evaluating the
design criterion after changes to a design.
In recent years much work has been done on the development of algorithms to compute optimal split-plot and blocked

response surface designs. Goos and Vandebroek (2003) used a point-exchange algorithm to compute a D-optimal split-plot
design for given numbers and sizes of whole plots. Jones and Goos (2007) did the samemaking use of a coordinate-exchange
algorithm. In these papers the whole-plot size is equal for every whole-plot whereas in Goos and Vandebroek (2001b, 2004)
exchange algorithms were developed to construct D-optimal split-plot designs where this constraint is relaxed. A point-
exchange algorithm was also implemented in Goos and Vandebroek (2001a) to find D-optimal response surface designs for
blocked experiments with equal block sizes and random block effects. In Kessels et al. (2008) a point-exchange algorithm
was developed to solve a conjoint design problem, based on the optimal design approach for blocked experiments with
heterogeneous block sizes. It is clear that two types of algorithms have been used to search for optimal split-plot and
block designs, namely point-exchange and coordinate-exchange algorithms. Point-exchange algorithms make use of a set
of candidate design points that cover the experimental region well. At each step of the algorithm, an entire design point
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is replaced by a point from the candidate set and this change is evaluated in terms of the optimality criterion. Coordinate-
exchange algorithms do not require the construction of a set of candidate points. At each step of these algorithms, only the
level of a single factor is modified rather than a complete design point.
The published papers on optimal split-plot and blocked response surface designs concentrate on the construction of D-

optimal designs. This means that the computation of the determinant of the information matrix, which is of order n3 for
a matrix of rank n, absorbs a considerable fraction of the run-time of the design construction algorithms. In order to find
good designs within a reasonable amount of time, it is therefore crucial to make use of update formulas that involve the
computation of determinants of low-rank matrices only.
In addition, it is important to have fast update procedures for the inverse of the information matrix because the update

formulas for its determinant depend on it. A fast update of the inverse of the information matrix also opens the prospect of
computing A- and V-optimal split-plot and block designs at a lower computational cost.
In this paper update formulas for the determinant and the inverse of the informationmatrix of split-plot andblock designs

with randomblock effects are presented. These speed up the construction of D-, A- or V-optimal split-plot and block designs.
The update formulas are based on the random intercept model typically used to analyze data from split-plot and block
designs. The essential difference between blocked and split-plot designs is that split-plot designs are used in caseswhere the
levels of some factors, the so-called hard-to-change factors, are difficult to reset. The levels of these factors are therefore held
constant for several successive runs, leading to blocks of runs at one level for each of the hard-to-change factors. In the split-
plot literature, these blocks are calledwhole plots. The remaining factors in a split-plot experiments are reset independently
for each run and called easy-to-change factors. As opposed to split-plot designs, block designs only involve easy-to-change
factors. The runs in a block design are grouped in blocks because they cannot be carried out under homogeneous conditions.
In this article, the update formulas are described for the more complicated case of split-plot designs. Each of the update
formulas for easy-to-change factors for split-plot designs can be adapted easily for the construction of block designs. This is
explained in the discussion.

2. Statistical model and algebraic formulas

2.1. Statistical model

The statistical model corresponding to a design with bwhole plots of sizes k1, . . . , kb can be written as
Y = Xβ + Zγ + ε, (1)

where Y is an n-dimensional response vector,X represents the n×p designmatrixwhich contains the settings of the various
experimental factors and their model expansion, β is the p-dimensional vector of the factor effects and Z is an n× bmatrix
of zeroes and ones, with the (j, i)th element equal to one if the jth run belongs to the ith whole plot, and zero otherwise.
Finally, the b-dimensional vector γ and the n-dimensional vector ε contain the whole-plot effects and the random errors,
respectively. It is assumed that

E(ε) = 0n and cov(ε) = σ 2ε In, (2)

E(γ) = 0b and cov(γ) = σ 2γ Ib, (3)
and

cov(ε, γ) = 0b×n. (4)
When using this model, the covariance matrix of the responses is

V = σ 2ε In + σ
2
γ ZZ

′, (5)

where the variancesσ 2ε andσ
2
γ are called the error variance andwhole-plot variance, respectively. Thismatrix can bewritten

as
V = diag(V1, . . . ,Vb), (6)

with compound symmetric

Vi = σ 2ε Iki + σ
2
γ 1ki1

′

ki , (7)
when the runs of the experiment are arranged per whole plot. In this expression, Iki is the ki-dimensional identity matrix
and 1ki is a ki-dimensional vector of ones.
The unknown model parameter β in (1) can be estimated using the generalized least squares estimator

β̂ =
(
X′V−1X

)−1 X′V−1Y . (8)
The covariance matrix of this estimator equals

var(β̂) =
(
X′V−1X

)−1
, (9)

and the information matrix on the unknown parameters β is given by

M = X′V−1X. (10)
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The inverse covariance matrix of the vector of responses can be written as

V−1 = σ−2ε In − σ−2ε ηZ(Ib + ηZ′Z)−1Z′, (11)

where η = σ 2γ /σ
2
ε measures the extent to which observations are correlated. When ordering the runs per whole plot,

Eq. (11) can be written as

V−1 = diag(V−11 , . . . ,V
−1
b ), (12)

with

V−1i = σ
−2
ε Iki − σ

−2
ε

η

1+ ηki
1ki1

′

ki . (13)

This makes it possible to rewrite the information matrix (10) as

M = σ−2ε X′X− σ−2ε ηX′Z(Ib + ηZ′Z)−1Z′X

= σ−2ε X′X− σ−2ε
b∑
i=1

[
η

1+ ηki

(
X′i1ki

) (
X′i1ki

)′]

= σ−2ε

[
b∑
i=1

ki∑
j=1

f
(
wi, tij

)
f ′
(
wi, tij

)]
− σ−2ε

b∑
i=1

[
η

1+ ηki

(
X′i1ki

) (
X′i1ki

)′]
, (14)

where Xi is the part of the design matrix X corresponding to the ith whole plot and f
(
wi, tij

)
is the model expansion of the

jth design point in the ith whole plot. The vectorwi denotes the levels of the hard-to-change factors within whole plot i. The
vector tij denotes the levels of the easy-to-change factors at the jth run within the ith whole plot. Without loss of generality
it is assumed in the following sections that σ 2ε = 1.
The D-, A- and V-optimality criteria are direct functions of the informationmatrixM. A D-optimal designmaximizes |M|,

whereas an A-optimal design minimizes tr
(
M−1

)
. A V-optimal design minimizes∫

(w,t)∈χ

f ′ (w, t)M−1f (w, t) dwdt,

where χ represents the region of interest forw and t . As shown by Meyer and Nachtsheim (1995), this can be rewritten as
tr
(
M−1B

)
, where

B =
∫

(w,t)∈χ

f (w, t) f ′ (w, t) dwdt .

The key role |M| and M−1 play in these optimality criteria means that fast update formulas for them are desirable for the
algorithmic search for optimal designs.
In the remainder of this paper a series of different possible scenarios and the corresponding update formulas are

presented. These scenarios are applicable to the situation where the number of runs is fixed for every whole plot as well as
to the situation where each ki is free to be chosen.

2.2. Algebraic formulas for the derivation of the update formulas

The update formulas derived in this paper make use of two algebraic formulas, proofs of which can be found in Harville
(1997), for matrices of the form R+ STU. In this expression, R and T are nonsingular r × r and t × t matrices, respectively,
whereas S and U are r × t and t × r matrices, respectively. The formulas are given by

|R+ STU| = |R| |T|
∣∣T−1 + UR−1S

∣∣
= |R|

∣∣I+ TUR−1S
∣∣ (15)

and

(R+ STU)−1 = R−1 − R−1S
(
T−1 + UR−1S

)−1 UR−1. (16)

The latter expression is sometimes referred to as the Sherman–Morrison–Woodbury formula. It is shown below that the
information matrix in (14) after a change to one or more levels of easy-to-change or hard-to-change factors, or after a swap
of two design points in different whole plots, in general can be expressed as

M∗ = M+ U′DU, (17)
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whereM andM∗ are the informationmatrices before and after the change, respectively,D is a d-dimensional diagonalmatrix
and U is a d× pmatrix. The update of the determinant of this information matrix can be done using a formula of the form∣∣M∗∣∣ = |M| |D| ∣∣D−1 + UM−1U′

∣∣ , (18)

whereas the inverse of the information matrix can be updated as follows:

M∗−1 = M−1 −M−1U′
(
D−1 + UM−1U′

)−1 UM−1. (19)

The update formulas are extremely useful because |M| andM−1 are being stored during the operation of the algorithm, and
|D| as well as D−1 are easy to compute as D is a diagonal matrix. The actual update formulas are detailed in the following
sections.

3. Changes to easy-to-change factor levels

Changes to the level of one easy-to-change factor for one of the runs occur in both coordinate-exchange and point-
exchange algorithms, whereas changes to the level of more than one such factor are made in point-exchange algorithms
only. When an adjustment is made to the easy-to-change factors tij of run j in whole plot i, only the corresponding row in
the design matrix X is affected. Using f ′(wi, tij) to denote the original of the affected row and f ′(wi, t∗ij ) for the adjustment,
the information matrix (14) can be updated as follows:

M∗ = M− f
(
wi, tij

)
f ′
(
wi, tij

)
+ f

(
wi, t∗ij

)
f ′
(
wi, t∗ij

)
+

η

1+ ηki

(
X′i1ki

) (
X′i1ki

)′
−

η

1+ ηki

(
X∗′i 1ki

) (
X∗′i 1ki

)′
, (20)

whereM∗ andX∗i represent the updated versions ofM andXi, respectively. Moreover the termX∗′i 1ki can easily be computed
as

X∗′i 1ki = X′i1ki − f
(
wi, tij

)
+ f

(
wi, t∗ij

)
. (21)

In matrix notation Eq. (20) can be written as

M∗ = M+


f ′
(
wi, tij

)
f ′
(
wi, t∗ij

)(
X′i1ki

)′(
X∗′i 1ki

)′

′


−1 0 0 0
0 1 0 0
0 0

η

1+ ηki
0

0 0 0
−η

1+ ηki



f ′
(
wi, tij

)
f ′
(
wi, t∗ij

)(
X′i1ki

)′(
X∗′i 1ki

)′


= M+ U′1D1U1, (22)

where

U1 =
[
f
(
wi, tij

)
f
(
wi, t∗ij

) (
X′i1ki

) (
X∗′i 1ki

) ]′
and

D1 = diag
(
−1, 1,

η

1+ ηki
,−

η

1+ ηki

)
.

The updated information matrix is now of the form specified in Eq. (17), with M and D1 nonsingular p × p and 4 × 4
matrices, respectively, and U′1 and U1p × 4 and 4 × pmatrices, respectively. So, the expressions (18) and (19) can be used
for computing |M∗| andM∗−1, which results in the following update formulas:∣∣M∗∣∣ = |M| ∣∣I4 + D1U1M−1U′1

∣∣
= |M| |D1|

∣∣D−11 + U1M−1U′1
∣∣ (23)

and

M∗−1 = M−1 −M−1U′1
(
D−11 + U1M−1U′1

)−1 U1M−1, (24)

where

|D1| =
η2

(1+ ηki)2
. (25)

When looking at Eqs. (23) and (24) it should be clear that to compute the determinant or the inverse of the new information
matrix, the calculation of the determinant or the inverse of a 4× 4 matrix is required instead of a p× pmatrix.
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4. Changes to hard-to-change factor levels

As with those from the previous section the update formulas presented here are useful for point-exchange as well as
coordinate-exchange algorithms. The major difference is that a change of the level of one or more hard-to-change factors
in the jth run of the ith whole plot implies that every run in the ith whole plot must implement this change. The reason is
that the level of every hard-to-change factor has to be held constant for all the runs in a whole plot. For this situation the
updated information matrix becomes

M∗ = M− X′iXi + X∗′i X
∗

i +
η

1+ ηki

(
X′i1ki

) (
X′i1ki

)′
−

η

1+ ηki

(
X∗′i 1ki

) (
X∗′i 1ki

)′
, (26)

where

X∗i =
[
f
(
w∗i , ti1

)
. . . f

(
w∗i , tiki

)]′
, (27)

with w∗i the modified version of the hard-to-change factor levels wi in whole plot i. In matrix notation, the information
matrix in (26) can be written as

M∗ = M+


Xi
X∗i(

X′i1ki
)′(

X∗′i 1ik
)′

′


−Iki 0 0 0
0 Iki 0 0
0 0

η

1+ ηki
0

0 0 0
−η

1+ ηki




Xi
X∗i(

X′i1ki
)′(

X∗′i 1ki
)′


= M+ U′2D2U2, (28)

where

U2 =
[
X′i X∗′i

(
X′i1ki

) (
X∗′i 1ki

) ]′
and

D2 = diag
(
−Iki , Iki ,

η

1+ ηki
,
−η

1+ ηki

)
.

All this results in the following update formulas:∣∣M∗∣∣ = |M| ∣∣I2ki+2 + D2U2M−1U′2
∣∣

= |M| |D2|
∣∣D−12 + U2M−1U′2

∣∣ (29)

and

M∗−1 = M−1 −M−1U′2
(
D−12 + U2M−1U′2

)−1 U2M−1, (30)

where

|D2| =
η2

(1+ ηki)2
(−1)ki+1. (31)

Here,U2 is a (2ki+2)×pmatrix andD2 is a diagonal (2ki+2)×(2ki+2)matrix. As a consequence, updating the determinant
(or the inverse) of the information matrix after a change in one or more hard-to-change variables requires the computation
of the determinant (or the inverse) of a (2ki + 2)× (2ki + 2)matrix which is advantageous when ki is small in comparison
to the number of model parameters p.

5. Swap of points between two whole plots

In the course of a point-exchange algorithm, such as the one by Goos and Vandebroek (2003), interchanges or swaps of
two points from different whole plots i and l can be considered. For this to make sense, the levels of the hard-to-change
factors should be the same for both points, i.e.wi = wl. When this is the case, a fast update formula for the determinant and
the inverse can be derived too. The derivation uses the fact that the swap only has an impact on the corresponding rows of
the submatrices Xi and Xl but not on the matrix product X′X. The updated information matrix equals

M∗ = M+
η

1+ ηki

(
X′i1ki

) (
Xi1ki

)′
+

η

1+ ηkl

(
X′l1kl

) (
X′l1kl

)′
−

η

1+ ηki

(
X∗′i 1ki

) (
X∗′i 1ki

)′
−

η

1+ ηkl

(
X∗′l 1kl

) (
X∗′l 1kl

)′
, (32)
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where X∗i and X
∗

l represent the updated versions of Xi and Xl, respectively. When f
(
wi, tij

)
and f (wl, tlm) denote the runs

that are moved from the ith whole plot to the lth and vice versa, X∗′i 1ki and X
∗′

l 1kl can easily be calculated as

X∗′i 1ki = X′i1ki − f
(
wi, tij

)
+ f (wl, tlm)

and

X∗′l 1kl = X′l1kl − f (wl, tlm)+ f
(
wi, tij

)
.

Eq. (32) can also be expressed as

M∗ = M+


(
X′i1ki

)′(
X′l1kl

)′(
X∗′i 1ki

)′(
X∗′l 1kl

)′

′



η

1+ ηki
0 0 0

0
η

1+ ηkl
0 0

0 0
−η

1+ ηki
0

0 0 0
−η

1+ ηkl



(
X′i1ki

)′(
X′l1kl

)′(
X∗′i 1ki

)′(
X∗′l 1kl

)′


= M+ U′3D3U3, (33)

where

U3 =
[
(X′i1ki) (X′l1kl) (X∗′i 1ki) (X∗′l 1kl)

]′
and

D3 = diag
(

η

1+ ηki
,

η

1+ ηkl
,
−η

1+ ηki
,
−η

1+ ηkl

)
.

This results in the following update formulas for the new information matrix:∣∣M∗∣∣ = |M| ∣∣I4 + D3U3M−1U′3
∣∣

= |M| |D3|
∣∣D−13 + U3M−1U′3

∣∣ (34)

and

M∗−1 = M−1 −M−1U′3
(
D−13 + U3M−1U′3

)−1 U3M−1, (35)

where

|D3| =
(

η

1+ ηki

)2 (
η

1+ ηkl

)2
.

As in Section 3, using the update formulas requires the calculation of the determinant or the inverse of a 4×4matrix instead
of a p× pmatrix.

6. Change in the number of runs per whole plot

Update formulas can be derived for problems where the number of runs per whole plot is fixed, but also for problems
where the number of runs in a whole plot can change in the course of the algorithm. A scenario in which the number of runs
in a whole plot changes is when a run

(
wi, tij

)
is removed from whole plot i and a new run,

(
wl, tl,kl+1

)
, is added to whole

plot l. For this scenario the new information matrix can be written as

M∗ = M− f
(
wi, tij

)
f ′
(
wi, tij

)
+ f

(
wl, tl,kl+1

)
f ′
(
wl, tl,kl+1

)
+

η

1+ ηki

[(
X′i1ki

) (
X′i1ki

)′]
−

η

1+ η(ki − 1)

[(
X∗′i 1ki−1

) (
X∗′i 1ki−1

)′]
+

η

1+ ηkl

[(
X′l1kl

) (
X′l1kl

)′]
−

η

1+ η(kl + 1)

[(
X∗′l 1kl+1

) (
X∗′l 1kl+1

)′]
, (36)

with

X∗′i 1ki−1 = X′i1ki − f
(
wi, tij

)
and

X∗′l 1kl+1 = X′l1kl + f
(
wl, tl,kl+1

)
.
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In matrix notation, Eq. (36) becomes

M∗ = M+



f ′
(
wi, tij

)
f ′
(
wl, tl,kl+1

)(
X′i1ki

)′(
X∗′i 1ki−1

)′(
X′l1kl

)′(
X∗′l 1kl+1

)′



′



−1 0 0 0 0 0
0 1 0 0 0 0
0 0

η

1+ ηki
0 0 0

0 0 0
−η

1+ η(ki − 1)
0 0

0 0 0 0
η

1+ ηkl
0

0 0 0 0 0
−η

1+ η(kl + 1)



×



f ′
(
wi, tij

)
f ′
(
wl, tl,kl+1

)(
X′i1ki

)′(
X∗′i 1ki−1

)′(
X′l1kl

)′(
X∗′l 1kl+1

)′

 . (37)

This can also be written as

M∗ = M+ U′4D4U4, (38)

with

U4 =
[
f
(
wi, tij

)
f
(
wl, tl,kl+1

) (
X′i1ki

) (
X∗′i 1ki−1

) (
X′l1kl

) (
X∗′l 1kl+1

)]′
and

D4 = diag
(
−1, 1,

η

1+ ηki
,

−η

1+ η(ki − 1)
,

η

1+ ηkl
,

−η

1+ η(kl + 1)

)
.

This results in the following update formulas:∣∣M∗∣∣ = |M| ∣∣I6 + D4U4M−1U′4
∣∣

= |M| |D4|
∣∣D−14 + U4M−1U′4

∣∣ (39)

and

M∗−1 = M−1 −M−1U′4
(
D−14 + U4M−1U′4

)−1 U4M−1, (40)

where

|D4| =
−η4

(1+ ηki) (1+ ηkl) {1+ η (ki − 1)} {1+ η (kl + 1)}
. (41)

It is clear from Eqs. (39) and (40) that using the update formulas for the new information matrix requires the computation
of the determinant or the inverse of a 6× 6 matrix instead of a p× pmatrix.

7. Discussion

To quantify the benefit of the presented update formulas for the algorithmic construction of optimal split-plot designs, a
small simulation studywas carried out. In this study a point-exchange algorithmwas used to construct D-optimal two-level
split-plot designs with different numbers of factors and whole plots to estimate a main-effects model. A point-exchange
algorithm without any update formula was compared to a point-exchange algorithm using the update formulas (23) and
(24) for changes to easy-to-change factor levels as well as the update formulas (29) and (30) for changes to hard-to-change
factor levels. Next, the efficiency of the update formulas (34) and (35) for a swap of points between two whole plots was
examined. Therefore, two point-swap algorithms were compared, one using the update formulas and one not using them.
While the use of the update formulas does not speed up the computationswhen the number of factors is as small as three,

it does lead to substantial savings in computing time if the number of factors is four or more. Using the update formulas for
the hard-to-change and easy-to-change factors speeds up the computations by a factor of four to six for a problem involving
four factors, and by a factor of 32 to 90 for a six-factor split-plot design. The speed of the swapping algorithm is increased
with a factor of five to eight for a problem involving four factors, and with a factor of around 200 for a six-factor problem.
As mentioned in the introduction, the model typically used in the context of blocked experiments with random block

effects is the same as the one for split-plot experiments. As a result, the update formulas derived here are also useful for
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Table 1
6-run suboptimal split-plot design.

Whole plot w t1 t2

1 −1 1 0
−1 0 −1

2 0 1 0
0 1 −1

3 −1 −1 −1
−1 0 −1

Table 2
New intermediate 6-run split-plot design in scenario 1.

Whole plot w t1 t2

1 −1 1 0
−1 0 −1

2 0 −1 1
0 1 −1

3 −1 −1 −1
−1 0 −1

the construction of optimal designs for blocked experiments. Only the results from Section 4 do not translate to blocked
experiments because this kind of experiment does not involve hard-to-change factors. As a matter of fact, it is implicitly
assumed that all factors in a blocked experiment are easy-to-change. Basically, to rewrite the update formulas for blocked
experiments, all that has to be done is replace f (wi, tij) by f (tij).
This article is the first to discuss fast update formulas for changes to hard-to-change factor levels and for changes that

affect the size of the whole plots (or blocks) in a split-plot (or a block) design. For changes to easy-to-change factor levels
and swaps of points from different whole plots (or blocks), Goos and Vandebroek (2001a)mention that they used the update
formula∣∣M+ uu′

∣∣ = |M| (1+ u′M−1u),

where u is a p-dimensional vector andM is the information matrix, in their point-exchange algorithm, without discussing
the actual implementation. The problemwith using just this update formula is that the calculation of |M| after an exchange
of a design point with a candidate point and after the swap of two design points from different whole plots (or blocks)
always requires updating the inverse of M. The new formulas provided in our paper render this computationally intensive
extra update ofM−1 unnecessary.

Appendix. A simple numerical example

In this Appendix, we present a simple numerical example to illustrate the application of the update formulas derived in
Sections 3–6. We consider a small design with three factors of which w is the hard-to-change factor and t1 and t2 are the
easy-to-change factors. We assume that a point-exchange algorithm is used to find a D-optimal split-plot design with six
runs and three whole plots of two runs to estimate a main-effects model. Hence, n = 6, k1 = k2 = k3 = 2 and p = 4.
When using the point of a 33 factorial design as the set of candidate design points, a possible intermediate suboptimal design
produced in the course of the point-exchange algorithm is given in Table 1.We now showwhat kind of exchanges and swaps
can be made next to attempt to improve the design.

A.1. Scenario 1: Changes to easy-to-change factor levels

A possible modification of the design in Table 1 in the course of the algorithm could be the replacement of the third run,
i.e. (0, 1, 0), by another point of the candidate set, say point (0,−1, 1). The new intermediate design, shown in Table 2,
is then obtained. Since there is only a change in the levels of the easy-to-change factors t1 and t2, the update formulas in
Section 3 are applicable. In this specific situation the change affects the first run of the second whole plot. Therefore, in
Eqs. (20)–(25), i = 2 and j = 2,

f (w2, t21) =

101
0

 , f (w2, t∗21) =

 1
0
−1
1

 ,
X2 =

[
1 0 1 0
1 0 1 −1

]
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Table 3
New intermediate 6-run split-plot design in scenario 2.

Whole plot w t1 t2

1 −1 1 0
−1 0 −1

2 1 1 0
1 1 −1

3 −1 −1 −1
−1 0 −1

and

X∗2 =
[
1 0 −1 1
1 0 1 −1

]
.

As a result,

U1 =

1 0 1 0
1 0 −1 1
2 0 2 −1
2 0 0 0


and

D1 =


−1 0 0 0
0 1 0 0
0 0

η

1+ 2η
0

0 0 0
−η

1+ 2η

 .

A.2. Scenario 2: Changes to hard-to-change factor levels

Suppose that when reaching the suboptimal design in Table 1, the algorithm’s next move is the replacement of the third
run, i.e. (0, 1, 0), by point (1, 1, 0) from the candidate set. This move involves a change of the level of the hard-to-change
factorw. Since the fourth run, i.e. (0, 1,−1), is executed in the samewhole plot, its whole-plot factor level also has to change
to 1, so that the fourth run equals (1, 1,−1) after the modification. The resulting new design is shown in Table 3. As all the
changes take place in the second whole plot, i = 2. Furthermore

X2 =
[
1 0 1 0
1 0 1 −1

]
, X∗2 =

[
1 1 1 0
1 1 1 −1

]
,

U2 =


1 0 1 0
1 0 1 −1
1 1 1 0
1 1 1 −1
2 0 2 −1
2 2 2 −1


and

D2 =



−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0

η

1+ 2η
0

0 0 0 0 0
−η

1+ 2η


.

A.3. Scenario 3: Swap of points between two whole plots

Since the level of the hard-to-change factorw in the suboptimal design of Table 1 is the same for the runs in whole plot
one and three, another possible move could be the swap of the second run of the first whole plot (i = 1, j = 2) and the first
run of the third whole plot (l = 3,m = 1), i.e. points (−1, 0,−1) and (−1,−1,−1), respectively. This way, the design in
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Table 4
New intermediate 6-run split-plot design in scenario 3.

Whole plot w t1 t2

1 −1 1 0
−1 −1 −1

2 0 1 0
0 1 −1

3 −1 0 −1
−1 0 −1

Table 5
New intermediate 6-run split-plot design in scenario 4.

Whole plot w t1 t2

1 −1 0 −1

2
0 1 0
0 1 −1
0 −1 1

3 −1 −1 −1
−1 0 −1

Table 4 is obtained. The submatrices X1 and X3 and their updated versions, necessary the calculate the update information
matrix in Eq. (31), are

X1 =
[
1 −1 1 0
1 −1 0 −1

]
,

X∗1 =
[
1 −1 1 0
1 −1 −1 −1

]
,

X3 =
[
1 −1 −1 −1
1 −1 0 −1

]
and

X∗3 =
[
1 −1 0 −1
1 −1 0 −1

]
.

In this case,

U3 =

2 −2 1 −1
2 −2 −1 −2
2 −2 0 −1
2 −2 0 −2


and

D3 =



η

1+ 2η
0 0 0

0
η

1+ 2η
0 0

0 0
−η

1+ 2η
0

0 0 0
−η

1+ 2η


.

A.4. Scenario 4: Change in the number of runs per whole plot

Suppose that the first run of the first whole plot, i.e. (−1, 1, 0), is removed from the design in Table 1 and that the new
point (0,−1, 1) is added as a third run to the secondwhole plot. This leads to the design in Table 5. In this situation i = j = 1
and l = 2,

f (w1, t11) =

 1
−1
1
0

 , f (w2, t23) =

 1
0
−1
1

 ,
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X1 =
[
1 −1 1 0
1 −1 0 −1

]
,

X∗1 =
[
1 −1 0 −1

]
,

X2 =
[
1 0 1 0
1 0 1 −1

]
and

X∗2 =

[1 0 1 0
1 0 1 −1
1 0 −1 1

]
.

The corresponding matrices U4 and D4 to update the information matrix, as shown in Eq. (38), are

U4 =


1 −1 1 0
1 0 −1 1
2 −2 1 −1
1 −1 0 −1
2 0 2 −1
3 0 1 0

 ,

D4 =



−1 0 0 0 0 0
0 1 0 0 0 0
0 0

η

1+ 2η
0 0 0

0 0 0
−η

1+ η
0 0

0 0 0 0
η

1+ 2η
0

0 0 0 0 0
−η

1+ 3η


.
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