Finding the best journey for your parcel
– Simulation of B2C distribution in Antwerp

Florian Arnold
University of Antwerp
Operations Research Group

Ivan Cardenas
University of Antwerp
Department of Transport and Regional Economics

Kenneth Sörensen
University of Antwerp
Operations Research Group

Wouter Dewulf
University of Antwerp
Department of Transport and Regional Economics

Research question

Distribution activities in cities related to B2C e-commerce account for a significant amount of external costs. Can **innovative delivery concepts** reduce the operational and external costs, and thereby satisfy all stakeholders? We analyse potential **what-if scenarios** in a quantitative simulation study.

Methodology

We derive demand density from real-world delivery data

We simulate customer demand for several days

We derive travel times and distances from Open Street Map and compute delivery routes

Results

1.) State-of-the-art

![Costs per delivery](image1)

Operational costs (vehicle costs, labour costs)

External costs (emissions, noise, congestion)

Demand per day

2.) Customer self-pick-up from delivery points

![Costs per delivery](image2)

Costs per delivery vs. % of self-pick-up customers

3.) Bike deliveries from delivery points

![Costs per delivery](image3)

Costs per delivery vs. State-of-the-art and Bike deliveries

4.) Bike deliveries & self-pick-up

![Costs per delivery](image4)

Costs per delivery vs. % of self-pick-up customers

A combination of self-pick-up and collaborative bike deliveries can decrease both operational and external costs.

Incentive for stakeholders to work together on sustainable delivery solutions.

